Desymmetrization of Diarylmethylamido Bis(phenols) through Peptide-Catalyzed Bromination: Enantiodivergence as a Consequence of a 2 amu Alteration at an Achiral Residue within the Catalyst
- PMID: 29020446
- PMCID: PMC5738245
- DOI: 10.1021/acs.joc.7b02339
Desymmetrization of Diarylmethylamido Bis(phenols) through Peptide-Catalyzed Bromination: Enantiodivergence as a Consequence of a 2 amu Alteration at an Achiral Residue within the Catalyst
Abstract
Diarylmethylamido bis(phenols) have been subjected to peptide-catalyzed, enantioselective bromination reactions. Desymmetrization of compounds in this class has been achieved such that enantioenriched products may be isolated with up to 97:3 er. Mechanistically, the observed enantioselectivity was shown to be primarily a function of differential functionalization of enantiotopic arenes, although additional studies unveiled a contribution from secondary kinetic resolution of the product (to afford the symmetrical dibromide) under the reaction conditions. Variants of the tetrapeptide catalyst were also evaluated and revealed a striking observation-enantiodivergent catalysis is observed upon changing the achiral amino acid residue in the catalyst (at the i+2 position) from an aminocyclopropane carboxamide residue (97:3 er) to an aminoisobutyramide residue (33:67 er) under a common set of conditions. An expanded set of catalysts was also evaluated, enabling structure/selectivity correlations to be considered in a mechanistic light.
Conflict of interest statement
The authors declare no competing financial interests. Crystallographic data are deposited with the Cambridge Crystallographic Data Center under the accession number CCDC 1573490 (
Figures





References
-
- Ameen D, Snape TJ. Med Chem Comm. 2013;4:893.
- Naito R, Yonetoku Y, Okamoto Y, Toyoshima A, Ikeda K, Takeuchi M. J Med Chem. 2005;48:6597. - PubMed
- Plobeck N, Delorme D, Wei ZY, Yang H, Zhou F, Schwarz P, Gawell L, Gagnon H, Pelcman B, Schmidt R, Yue SY, Walpole C, Brown W, Zhou E, Labarre M, Payza K, St-Onge S, Kamassah A, Morin PE, Projean D, Ducharme J, Roberts E. J Med Chem. 2000;43:3878. - PubMed
- Calderon SN, Rice KC, Rothman RB, Porreca F, Flippen-Anderson JL, Kayakiri H, Xu H, Becketts K, Smith LE, Bilsky EJ, Davis P, Horvath R. J Med Chem. 1997;40:695. - PubMed
-
- Schmidt F, Stemmler RT, Rudolph J, Bolm C. Chem Soc Rev. 2006;35:454. - PubMed
-
-
Selected examples: Wangweerawong A, Bergman RG, Ellman JA. J Am Chem Soc. 2014;136:8520.Chen CC, Gopula B, Syu JF, Pan JH, Kuo TS, Wu PY, Henschke JP, Wu HL. J Org Chem. 2014;79:8077.Shao C, Yu HJ, Wu NY, Feng CG, Lin GQ. Org Lett. 2010;12:3820.Wang ZQ, Feng CG, Xu MH, Lin GQ. J Am Chem Soc. 2007;129:5336.Jagt RB, Toullec PY, Geerdink D, de Vries JG, Feringa BL, Minnaard AJ. Angew Chem Int Ed. 2006;45:2789.Duan HF, Jia YX, Wang LX, Zhou QL. Org Lett. 2006;8:2567.Tokunaga N, Otomaru Y, Okamoto K, Ueyama K, Shintani R, Hayashi T. J Am Chem Soc. 2004;126:13584.Kuriyama M, Soeta T, Hao X, Chen Q, Tomioka K. J Am Chem Soc. 2004;126:8128.Hayashi T, Kawai M, Tokunaga N. Angew Chem Int Ed. 2004;43:6125.
-
-
-
Selected examples: Touge T, Nara H, Fujiwhara M, Kayaki Y, Ikariya T. J Am Chem Soc. 2016;138:10084.Hou G, Tao R, Sun Y, Zhang X, Gosselin F. J Am Chem Soc. 2010;132:2124.
-
-
-
Selected examples: Yamamoto E, Hilton MJ, Orlandi M, Saini V, Toste FD, Sigman MS. J Am Chem Soc. 2016;138:15877.Tabuchi S, Hirano K, Miura M. Angew Chem Int Ed. 2016;55:6973.Guduguntla S, Hornillos V, Tessier R, Fañanás-Mastral M, Feringa BL. Org Lett. 2016;18:252.Friis SD, Pirnot MT, Buchwald SL. J Am Chem Soc. 2016;138:8372.Xu B, Li ML, Zuo XD, Zhu SF, Zhou QL. J Am Chem Soc. 2015;137:8700.Kim B, Chinn AJ, Fandrick DR, Senanayake CH, Singer RA, Miller SJ. J Am Chem Soc. 2016;138:7939.
-
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous