Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1988 Jun;103(6):907-12.
doi: 10.1093/oxfordjournals.jbchem.a122386.

Structure of the human tyrosine hydroxylase gene: alternative splicing from a single gene accounts for generation of four mRNA types

Affiliations
Free article

Structure of the human tyrosine hydroxylase gene: alternative splicing from a single gene accounts for generation of four mRNA types

K Kobayashi et al. J Biochem. 1988 Jun.
Free article

Abstract

Tyrosine hydroxylase (TH) is a rate-limiting enzyme for catecholamine biosynthesis. Recently, Grima et al. (Nature (1987) 326, 707-711) and we (Biochem. Biophys. Res. Commun. (1987) 146, 971-975; Nucleic Acids Res. (1987) 15, 6733) reported four similar but distinct mRNAs that encode human TH. These mRNAs are constant for the major part, but are distinguishable from one another as to the insertion/deletion of 12-bp and 81-bp sequences near the N-terminus. We isolated genomic clones encoding the human TH gene and determined the nucleotide sequence. The human TH gene is split into 14 exons. The 12-bp insertion sequence is encoded by the 3'-terminal portion of the first exon. The 81-bp insertion sequence corresponds to the second exon. Taking into consideration also the results of Southern blot analysis of human genomic DNA, we concluded that the four types of human TH mRNA are produced through alternative splicing from a single gene. Two kinds of alternative splicing are involved: the alternative use of two donor sites in the first exon, and the inclusion/exclusion of the second exon. We propose a possible secondary structure for the latter alternative splicing pathway.

PubMed Disclaimer

Publication types