Network-based approaches to quantify multicellular development
- PMID: 29021161
- PMCID: PMC5665831
- DOI: 10.1098/rsif.2017.0484
Network-based approaches to quantify multicellular development
Abstract
Multicellularity and cellular cooperation confer novel functions on organs following a structure-function relationship. How regulated cell migration, division and differentiation events generate cellular arrangements has been investigated, providing insight into the regulation of genetically encoded patterning processes. Much less is known about the higher-order properties of cellular organization within organs, and how their functional coordination through global spatial relations shape and constrain organ function. Key questions to be addressed include: why are cells organized in the way they are? What is the significance of the patterns of cellular organization selected for by evolution? What other configurations are possible? These may be addressed through a combination of global cellular interaction mapping and network science to uncover the relationship between organ structure and function. Using this approach, global cellular organization can be discretized and analysed, providing a quantitative framework to explore developmental processes. Each of the local and global properties of integrated multicellular systems can be analysed and compared across different tissues and models in discrete terms. Advances in high-resolution microscopy and image analysis continue to make cellular interaction mapping possible in an increasing variety of biological systems and tissues, broadening the further potential application of this approach. Understanding the higher-order properties of complex cellular assemblies provides the opportunity to explore the evolution and constraints of cell organization, establishing structure-function relationships that can guide future organ design.
Keywords: complexity; development; multicellularity; network science; self-organization; structure–function.
© 2017 The Authors.
Conflict of interest statement
We declare we have no competing interests.
Figures
References
-
- Smith JM, Szathmary E. 1997. The major transitions in evolution. Oxford, UK: Oxford University Press.
-
- Knoll AH. 2011. The multiple origins of complex multicellularity. Annu. Rev. Earth. Pl. Sci. 39, 217–239. (10.1146/annurev.earth.031208.100209) - DOI
-
- Buss L. 1987. The evolution of individuality. Princeton, NJ: Princeton University Press.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources