Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2017 Oct 12;5(4):66.
doi: 10.3390/microorganisms5040066.

The Gut Microbiome Feelings of the Brain: A Perspective for Non-Microbiologists

Affiliations
Review

The Gut Microbiome Feelings of the Brain: A Perspective for Non-Microbiologists

Aaron Lerner et al. Microorganisms. .

Abstract

Objectives: To comprehensively review the scientific knowledge on the gut-brain axis. Methods: Various publications on the gut-brain axis, until 31 July 2017, were screened using the Medline, Google, and Cochrane Library databases. The search was performed using the following keywords: "gut-brain axis", "gut-microbiota-brain axis", "nutrition microbiome/microbiota", "enteric nervous system", "enteric glial cells/network", "gut-brain pathways", "microbiome immune system", "microbiome neuroendocrine system" and "intestinal/gut/enteric neuropeptides". Relevant articles were selected and reviewed. Results: Tremendous progress has been made in exploring the interactions between nutrients, the microbiome, and the intestinal, epithelium-enteric nervous, endocrine and immune systems and the brain. The basis of the gut-brain axis comprises of an array of multichannel sensing and trafficking pathways that are suggested to convey the enteric signals to the brain. These are mediated by neuroanatomy (represented by the vagal and spinal afferent neurons), the neuroendocrine-hypothalamic-pituitary-adrenal (HPA) axis (represented by the gut hormones), immune routes (represented by multiple cytokines), microbially-derived neurotransmitters, and finally the gate keepers of the intestinal and brain barriers. Their mutual and harmonious but intricate interaction is essential for human life and brain performance. However, a failure in the interaction leads to a number of inflammatory-, autoimmune-, neurodegenerative-, metabolic-, mood-, behavioral-, cognitive-, autism-spectrum-, stress- and pain-related disorders. The limited availability of information on the mechanisms, pathways and cause-and-effect relationships hinders us from translating and implementing the knowledge from the bench to the clinic. Implications: Further understanding of this intricate field might potentially shed light on novel preventive and therapeutic strategies to combat these disorders. Nutritional approaches, microbiome manipulations, enteric and brain barrier reinforcement and sensing and trafficking modulation might improve physical and mental health outcomes.

Keywords: autoimmunity; axis; brain; dysbiome; gut; intestine; mechanisms; microbiome; pathways.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Schematic illustration of the factors that are associated with increasing (enhancers) or decreasing (protectors) of intestinal permeability at the TJ level. The leaky gut might initiate the autoimmune cascade. (Adapted from references [10,12,20,36,45,46,49,50,51,52,53,54,56,57,58]).
Figure 2
Figure 2
Gut–brain axis: bidirectional pathways impacting each other.

References

    1. Jahng J., Kim Y.S. Irritable Bowel Syndrome: Is It Really a Functional Disorder? A New Perspective on Alteration of Enteric Nervous System. J. Neurogastroenterol. Motil. 2016;22:163–165. doi: 10.5056/jnm16043. - DOI - PMC - PubMed
    1. Lerner A., Matthias T. GUT-the Trojan horse in remote organs’ autoimmunity. J. Clin. Cell. Immunol. 2016;7:401.
    1. De Palma G., Collins S.M., Bercik P. The microbiota-gut-brain axis in functional gastrointestinal disorders. Gut Microbes. 2014;5:419–429. doi: 10.4161/gmic.29417. - DOI - PMC - PubMed
    1. Carabotti M., Scirocco A., Maselli M.A., Severi C. The gut-brain axis: Interactions between enteric microbiota, central and enteric nervous systems. Ann. Gastroenterol. 2015;28:203–209. - PMC - PubMed
    1. Mayer E.A., Tillisch K., Gupta A. Gut/brain axis and the microbiota. J. Clin. Investig. 2015;125:926–938. doi: 10.1172/JCI76304. - DOI - PMC - PubMed

LinkOut - more resources