Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Nov;40(11):1314-1327.
doi: 10.1007/s12272-017-0970-6. Epub 2017 Oct 12.

Oligonol promotes glucose uptake by modulating the insulin signaling pathway in insulin-resistant HepG2 cells via inhibiting protein tyrosine phosphatase 1B

Affiliations

Oligonol promotes glucose uptake by modulating the insulin signaling pathway in insulin-resistant HepG2 cells via inhibiting protein tyrosine phosphatase 1B

Himanshu Kumar Bhakta et al. Arch Pharm Res. 2017 Nov.

Abstract

Insulin resistance and protein tyrosine phosphatase 1B (PTP1B) overexpression are strongly associated with type 2 diabetes mellitus (T2DM), which is characterized by defects in insulin signaling and glucose intolerance. In a previous study, we demonstrated oligonol inhibits PTP1B and α-glucosidase related to T2DM. In this study, we examined the molecular mechanisms underlying the anti-diabetic effects of oligonol in insulin-resistant HepG2 cells. Glucose uptake was assessed using a fluorescent glucose tracer, 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxyglucose, and the signaling pathway was investigated by western blotting. Oligonol significantly increased insulin-provoked glucose uptake and decreased PTP1B expression, followed by modulation of ERK phosphorylation. In addition, oligonol activated insulin receptor substrate 1 by reducing phosphorylation at serine 307 and increasing that at tyrosine 895, and enhanced the phosphorylations of Akt and phosphatidylinositol 3-kinase. Interestingly, it also reduced the expression of two key enzymes of gluconeogenesis (glucose 6-phosphatase and phosphoenolpyruvate carboxykinase), attenuated oxidative stress by scavenging/inhibiting peroxynitrite, and reactive oxygen species (ROS) generation, and augmented the expression of nuclear factor kappa B. These findings suggest oligonol improved the insulin sensitivity of insulin-resistant HepG2 cells by attenuating the insulin signaling blockade and modulating glucose uptake and production. Furthermore, oligonol attenuated ROS-related inflammation and prevented oxidative damage in our in vitro model of type 2 diabetes. These result indicate oligonol has promising potential as a treatment for T2DM.

Keywords: Diabetes mellitus; Glucose uptake; Insulin signaling; Insulin-resistant HepG2 cells; Oligonol; Protein tyrosine phosphatase 1B.

PubMed Disclaimer

MeSH terms

LinkOut - more resources