Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2017 Nov;280(1):83-92.
doi: 10.1111/imr.12571.

Extracellular nucleosides and nucleotides as immunomodulators

Affiliations
Review

Extracellular nucleosides and nucleotides as immunomodulators

Oliver Kepp et al. Immunol Rev. 2017 Nov.

Abstract

Some anticancer agents induce immunogenic cell death that is accompanied by the emission of danger signals into the tumor microenvironment, thus attracting and activating innate immune effectors and finally inducing anticancer immunity. The release of extracellular nucleosides such as adenosine triphosphate (ATP) from the tumor in response to anticancer therapy plays a pivotal role in the attraction of antigen presenting cells and the activation of inflammasome-mediated proinflammatory cascades. In contrast, the ectonucleotidase-catalyzed phosphohydrolysis of nucleotides to nucleosides reduces the extracellular availability of nucleotides, hence limiting the recruitment and activation of antigen-presenting cells. In addition, the (over-)production of nucleosides including adenosine by ectonucleotidases located on cancer cells and regulatory T cells can induce immunosuppression, as adenosine directly inhibits the proliferation and activation of effector T cells. Here, we discuss the importance of death metabolites for immunomodulation in general, and the role of the purine nucleotide ATP and its derivative adenosine in particular. In addition, we provide an overview on therapeutic interventions that reinstate tumor immunogenicity in conditions where nucleotide-dependent immunostimulation is obstructed.

Keywords: adaptive immunity; anticancer chemotherapy; cancer; immunogenic cell death.

PubMed Disclaimer

LinkOut - more resources