Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Dec 1:160:704-714.
doi: 10.1016/j.colsurfb.2017.10.029. Epub 2017 Oct 10.

Skin-penetrating polymeric nanoparticles incorporated in silk fibroin hydrogel for topical delivery of curcumin to improve its therapeutic effect on psoriasis mouse model

Affiliations

Skin-penetrating polymeric nanoparticles incorporated in silk fibroin hydrogel for topical delivery of curcumin to improve its therapeutic effect on psoriasis mouse model

Kai-Li Mao et al. Colloids Surf B Biointerfaces. .

Abstract

A poor percutaneous penetration capability for most topical anti-inflammatory drugs is one of the main causes compromising their therapeutic effects on psoriatic skin. Even though curcumin has shown a remarkable efficacy in the treatment of psoriasis, its effective penetration through the stratum corneum is still a major challenge during transdermal delivery. The aim of our study was to design skin-permeating nanoparticles (NPs) to facilitate delivery of curcumin to the deeper layers of the skin. A novel amphiphilic polymer, RRR-α-tocopheryl succinate-grafted-ε-polylysine conjugate (VES-g-ε-PLL) was synthesized and self-assembled into polymeric nanoparticles. The nanoparticles of VES-g-ε-PLL exhibiting an ultra-small hydrodynamic diameter (24.4nm) and a positive Zeta potential (19.6mV) provided a strong skin-penetrating ability in vivo. Moreover, curcumin could effectively be encapsulated in the polymeric nanoparticles with a drug loading capacity of 3.49% and an encapsulating efficiency of 78.45%. In order to prolong the retention time of the ultra-small curcumin-loaded nanoparticles (CUR-NPs) in the skin, silk fibroin was used as a hydrogel-based matrix to further facilitate topical delivery of the model drug. In vitro studies showed that CUR-NPs incorporated in silk fibroin hydrogel (CUR-NPs-gel) exhibited a slower release profile of curcumin than the plain CUR-gel, without compromising the skin penetration ability of CUR-NPs. In vivo studies on miquimod-induced psoriatic mice showed that CUR-NPs-gel exhibited a higher therapeutic effect than CUR-NPs as the former demonstrated a more powerful skin-permeating capability and a more effective anti-keratinization process. CUR-NPs-gel was therefore able to inhibit the expression of inflammatory cytokines (TNF-α, NF-κB and IL-6) to a greater extent. In conclusion, the permeable nanoparticle-gel system may be a potential carrier for the topical delivery of lipophilic anti-psoriatic drugs.

Keywords: Curcumin; Drug delivery systems; Permeable nanoparticles; Psoriasis; Silk fibroin; Skin permeation; Topical.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms