One-step construction of a molybdenum disulfide/multi-walled carbon nanotubes/polypyrrole nanocomposite biosensor for the ex-vivo detection of dopamine in mouse brain tissue
- PMID: 29037811
- DOI: 10.1016/j.bbrc.2017.10.059
One-step construction of a molybdenum disulfide/multi-walled carbon nanotubes/polypyrrole nanocomposite biosensor for the ex-vivo detection of dopamine in mouse brain tissue
Abstract
We developed a new strategy for construction of a biosensor for the neurotransmitter dopamine. The biosensor was constructed by one-step electrochemical deposition of a nanocomposite in aqueous solution at pH 7.0, consisting of molybdenum disulfide, multi-walled carbon nanotubes, and polypyrrole. A series of analytical methods was performed to investigate the surface characteristics and the improved electrocatalytic effect of the nanocomposite, including cyclic voltammetry, electrochemical impedance spectroscopy, field-emission scanning electron microscopy, atomic force microscopy, and Raman spectroscopy. The constructed biosensor showed high sensitivity (1.130 μAμM-1cm-2) with a dynamic linearity range of 25-1000 nM and a detection limit of 10 nM. Additionally, the designed sensor exhibited strong anti-interference ability and satisfactory reproducibility. The practical application of the sensor was manifested for the ex vivo determination of dopamine neurotransmitters using brain tissue samples of a mouse Parkinson's disease model.
Keywords: Dopamine; Ex vivo sensor; Molybdenum disulfide; Mouse Parkinson's disease model; One-step electrochemical deposition.
Copyright © 2017 Elsevier Inc. All rights reserved.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
