Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Nov:103:71-77.
doi: 10.1016/j.jinsphys.2017.10.008. Epub 2017 Oct 14.

Why is there no impact of the host species on the cold tolerance of a generalist parasitoid?

Affiliations
Free article

Why is there no impact of the host species on the cold tolerance of a generalist parasitoid?

Lucy Alford et al. J Insect Physiol. 2017 Nov.
Free article

Abstract

For generalist parasitoids such as those belonging to the Genus Aphidius, the choice of host species can have profound implications for the emerging parasitoid. Host species is known to affect a variety of life history traits. However, the impact of the host on thermal tolerance has never been studied. Physiological thermal tolerance, enabling survival at unfavourable temperatures, is not a fixed trait and may be influenced by a number of external factors including characteristics of the stress, of the individual exposed to the stress, and of the biological and physical environment. As such, the choice of host species is likely to also have implications for the thermal tolerance of the emerging parasitoid. The current study aimed to investigate the effect of cereal aphid host species (Sitobion avenae, Rhopalosiphum padi and Metopolophium dirhodum) on adult thermal tolerance, in addition to sex and size, of the aphid parasitoids Aphidius avenae, Aphidius matricariae and Aphidius rhopalosiphi. Results revealed no effect of host species on the cold tolerance of the emerging parasitoid, as determined by CTmin and Chill Coma, for all parasitoid species. Host species significantly affected the size of the emerging parasitoid for A. rhopalosiphi only, with individuals emerging from R. padi being significantly larger than those emerging from S. avenae, although this did not correspond to a difference in thermal tolerance. Furthermore, a significant difference in the size of male and female parasitoids was observed for A. avenae and A. matricariae, although, once again this did not correspond to a difference in cold tolerance. It is suggested that potential behavioural thermoregulation via host manipulation may act to influence the thermal environment experienced by the wasp and thus wasp thermal tolerance and, in doing so, may negate physiological thermal tolerance or any impact of the aphid host.

Keywords: Aphidius; Behavioural thermotolerance; Biological control; Cereal aphids; Host manipulation; Host quality.

PubMed Disclaimer

Publication types