Composing RNA Nanostructures from a Syntax of RNA Structural Modules
- PMID: 29039189
- PMCID: PMC6363482
- DOI: 10.1021/acs.nanolett.7b03842
Composing RNA Nanostructures from a Syntax of RNA Structural Modules
Abstract
Natural stable RNAs fold and assemble into complex three-dimensional architectures by relying on the hierarchical formation of intricate, recurrent networks of noncovalent tertiary interactions. These sequence-dependent networks specify RNA structural modules enabling orientational and topological control of helical struts to form larger self-folding domains. Borrowing concepts from linguistics, we defined an extended structural syntax of RNA modules for programming RNA strands to assemble into complex, responsive nanostructures under both thermodynamic and kinetic control. Based on this syntax, various RNA building blocks promote the multimolecular assembly of objects with well-defined three-dimensional shapes as well as the isothermal folding of long RNAs into complex single-stranded nanostructures during transcription. This work offers a glimpse of the limitless potential of RNA as an informational medium for designing programmable and functional nanomaterials useful for synthetic biology, nanomedicine, and nanotechnology.
Keywords: RNA architectonics; RNA folding; RNA nanotechnology; RNA self-assembly; nanoparticles; nanostructures; tectoRNAs.
Conflict of interest statement
The authors declare no competing financial interest.
Figures




Similar articles
-
RNA self-assembly and RNA nanotechnology.Acc Chem Res. 2014 Jun 17;47(6):1871-80. doi: 10.1021/ar500076k. Epub 2014 May 23. Acc Chem Res. 2014. PMID: 24856178
-
Controlling RNA self-assembly to form filaments.Nucleic Acids Res. 2006 Mar 6;34(5):1381-92. doi: 10.1093/nar/gkl008. Print 2006. Nucleic Acids Res. 2006. PMID: 16522648 Free PMC article.
-
Defining the syntax for self-assembling RNA tertiary architectures.Nucleic Acids Symp Ser (Oxf). 2009;(53):83-4. doi: 10.1093/nass/nrp042. Nucleic Acids Symp Ser (Oxf). 2009. PMID: 19749271 Free PMC article.
-
The emerging field of RNA nanotechnology.Nat Nanotechnol. 2010 Dec;5(12):833-42. doi: 10.1038/nnano.2010.231. Epub 2010 Nov 21. Nat Nanotechnol. 2010. PMID: 21102465 Free PMC article. Review.
-
DNA-templated lithography and nanofabrication for the fabrication of nanoscale electronic circuitry.Crit Rev Anal Chem. 2014;44(4):354-70. doi: 10.1080/10408347.2014.910636. Crit Rev Anal Chem. 2014. PMID: 25391721 Review.
Cited by
-
Responsive self-assembly of tectoRNAs with loop-receptor interactions from the tetrahydrofolate (THF) riboswitch.Nucleic Acids Res. 2019 Jul 9;47(12):6439-6451. doi: 10.1093/nar/gkz304. Nucleic Acids Res. 2019. PMID: 31045210 Free PMC article.
-
Oritatami: A Computational Model for Molecular Co-Transcriptional Folding.Int J Mol Sci. 2019 May 7;20(9):2259. doi: 10.3390/ijms20092259. Int J Mol Sci. 2019. PMID: 31067813 Free PMC article.
-
Tuning the size, shape and structure of RNA nanoparticles for favorable cancer targeting and immunostimulation.Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2020 Jan;12(1):e1582. doi: 10.1002/wnan.1582. Epub 2019 Aug 27. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2020. PMID: 31456362 Free PMC article. Review.
-
Methods for construction and characterization of simple or special multifunctional RNA nanoparticles based on the 3WJ of phi29 DNA packaging motor.Methods. 2018 Jul 1;143:121-133. doi: 10.1016/j.ymeth.2018.02.025. Epub 2018 Mar 9. Methods. 2018. PMID: 29530505 Free PMC article. Review.
-
Anhydrous Nucleic Acid Nanoparticles for Storage and Handling at Broad Range of Temperatures.Small. 2022 Apr;18(13):e2104814. doi: 10.1002/smll.202104814. Epub 2022 Feb 6. Small. 2022. PMID: 35128787 Free PMC article.
References
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources