Intensity inhomogeneity correction of SD-OCT data using macular flatspace
- PMID: 29040910
- PMCID: PMC6311386
- DOI: 10.1016/j.media.2017.09.008
Intensity inhomogeneity correction of SD-OCT data using macular flatspace
Abstract
Images of the retina acquired using optical coherence tomography (OCT) often suffer from intensity inhomogeneity problems that degrade both the quality of the images and the performance of automated algorithms utilized to measure structural changes. This intensity variation has many causes, including off-axis acquisition, signal attenuation, multi-frame averaging, and vignetting, making it difficult to correct the data in a fundamental way. This paper presents a method for inhomogeneity correction by acting to reduce the variability of intensities within each layer. In particular, the N3 algorithm, which is popular in neuroimage analysis, is adapted to work for OCT data. N3 works by sharpening the intensity histogram, which reduces the variation of intensities within different classes. To apply it here, the data are first converted to a standardized space called macular flat space (MFS). MFS allows the intensities within each layer to be more easily normalized by removing the natural curvature of the retina. N3 is then run on the MFS data using a modified smoothing model, which improves the efficiency of the original algorithm. We show that our method more accurately corrects gain fields on synthetic OCT data when compared to running N3 on non-flattened data. It also reduces the overall variability of the intensities within each layer, without sacrificing contrast between layers, and improves the performance of registration between OCT images.
Keywords: Intensity inhomogeneity correction; Macular flatspace; Optical coherence tomography; Registration; Retina.
Copyright © 2017 Elsevier B.V. All rights reserved.
Figures










Similar articles
-
INTENSITY INHOMOGENEITY CORRECTION OF MACULAR OCT USING N3 AND RETINAL FLATSPACE.Proc IEEE Int Symp Biomed Imaging. 2016 Apr;2016:197-200. doi: 10.1109/ISBI.2016.7493243. Epub 2016 Jun 16. Proc IEEE Int Symp Biomed Imaging. 2016. PMID: 27695603 Free PMC article.
-
Automated segmentation of the macula by optical coherence tomography.Opt Express. 2009 Aug 31;17(18):15659-69. doi: 10.1364/OE.17.015659. Opt Express. 2009. PMID: 19724565
-
Automated 3-D intraretinal layer segmentation of macular spectral-domain optical coherence tomography images.IEEE Trans Med Imaging. 2009 Sep;28(9):1436-47. doi: 10.1109/TMI.2009.2016958. Epub 2009 Mar 10. IEEE Trans Med Imaging. 2009. PMID: 19278927 Free PMC article.
-
Optical coherence tomography in imaging of macular diseases.Klin Oczna. 2010;112(4-6):138-46. Klin Oczna. 2010. PMID: 20825070 Review.
-
Macular assessment using optical coherence tomography for glaucoma diagnosis.Br J Ophthalmol. 2012 Dec;96(12):1452-5. doi: 10.1136/bjophthalmol-2012-301845. Epub 2012 Sep 27. Br J Ophthalmol. 2012. PMID: 23018425 Free PMC article. Review.
Cited by
-
Robust layer segmentation of esophageal OCT images based on graph search using edge-enhanced weights.Biomed Opt Express. 2018 Aug 27;9(9):4481-4495. doi: 10.1364/BOE.9.004481. eCollection 2018 Sep 1. Biomed Opt Express. 2018. PMID: 30615715 Free PMC article.
-
Structured layer surface segmentation for retina OCT using fully convolutional regression networks.Med Image Anal. 2021 Feb;68:101856. doi: 10.1016/j.media.2020.101856. Epub 2020 Oct 14. Med Image Anal. 2021. PMID: 33260113 Free PMC article.
-
Layer boundary evolution method for macular OCT layer segmentation.Biomed Opt Express. 2019 Feb 4;10(3):1064-1080. doi: 10.1364/BOE.10.001064. eCollection 2019 Mar 1. Biomed Opt Express. 2019. PMID: 30891330 Free PMC article.
-
Retinal layer parcellation of optical coherence tomography images: Data resource for multiple sclerosis and healthy controls.Data Brief. 2018 Dec 28;22:601-604. doi: 10.1016/j.dib.2018.12.073. eCollection 2019 Feb. Data Brief. 2018. PMID: 30671506 Free PMC article.
References
-
- Antony BJ, Lang A, Swingle EK, Al-Louzi O, Carass A, Solomon SD, Calabresi PA, Saidha S, Prince JL, 2016b. Simultaneous Segmentation of Retinal Surfaces and Microcystic Macular Edema in SDOCT Volumes. Proceedings of SPIE Medical Imaging (SPIE-MI 2016), San Diego, CA, February 27-March 3, 2016 9784, 97841C. - PMC - PubMed
-
- Arevalo JF (Ed.), 2009. Retinal Angiography and Optical Coherence Tomography. Springer-Verlag; New York.
-
- Arnold JB, Liow J-S, Schaper KA, Stern JJ, Sled JG, Shattuck DW, Worth AJ, Cohen MS, Leahy RM, Mazziotta JC, Rottenberg DA, 2001. Qualitative and quantitative evaluation of six algorithms for correcting intensity nonuniformity effects. NeuroImage 13 (5), 931–943. - PubMed
-
- Cabezas M, Oliver A, Lladó X, Freixenet J, Cuadra MB, 2011. A review of atlas-based segmentation for magnetic resonance brain images. Comput. Methods Programs Biomed 104 (3), e158–e177. - PubMed
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources