Analysis of substrate specificity of Trypanosoma brucei oligosaccharyltransferases (OSTs) by functional expression of domain-swapped chimeras in yeast
- PMID: 29042445
- PMCID: PMC5724018
- DOI: 10.1074/jbc.M117.811133
Analysis of substrate specificity of Trypanosoma brucei oligosaccharyltransferases (OSTs) by functional expression of domain-swapped chimeras in yeast
Abstract
N-Linked protein glycosylation is an essential and highly conserved post-translational modification in eukaryotes. The transfer of a glycan from a lipid-linked oligosaccharide (LLO) donor to the asparagine residue of a nascent polypeptide chain is catalyzed by an oligosaccharyltransferase (OST) in the lumen of the endoplasmic reticulum (ER). Trypanosoma brucei encodes three paralogue single-protein OSTs called TbSTT3A, TbSTT3B, and TbSTT3C that can functionally complement the Saccharomyces cerevisiae OST, making it an ideal experimental system to study the fundamental properties of OST activity. We characterized the LLO and polypeptide specificity of all three TbOST isoforms and their chimeric forms in the heterologous expression host S. cerevisiae where we were able to apply yeast genetic tools and newly developed glycoproteomics methods. We demonstrated that TbSTT3A accepted LLO substrates ranging from Man5GlcNAc2 to Man7GlcNAc2 In contrast, TbSTT3B required more complex precursors ranging from Man6GlcNAc2 to Glc3Man9GlcNAc2 structures, and TbSTT3C did not display any LLO preference. Sequence differences between the isoforms cluster in three distinct regions. We have swapped the individual regions between different OST proteins and identified region 2 to influence the specificity toward the LLO and region 1 to influence polypeptide substrate specificity. These results provide a basis to further investigate the molecular mechanisms and contribution of single amino acids in OST interaction with its substrates.
Keywords: N-linked glycosylation; Trypanosoma brucei; glycosylation occupancy analysis; lipid-linked oligosaccharide specificity; oligosaccharide; oligosaccharyltransferase; yeast.
© 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Conflict of interest statement
The authors declare that they have no conflicts of interest with the contents of this article
Figures





Similar articles
-
Single-subunit oligosaccharyltransferases of Trypanosoma brucei display different and predictable peptide acceptor specificities.J Biol Chem. 2017 Dec 8;292(49):20328-20341. doi: 10.1074/jbc.M117.810945. Epub 2017 Sep 19. J Biol Chem. 2017. PMID: 28928222 Free PMC article.
-
The lipid-linked oligosaccharide donor specificities of Trypanosoma brucei oligosaccharyltransferases.Glycobiology. 2012 May;22(5):696-703. doi: 10.1093/glycob/cws003. Epub 2012 Jan 12. Glycobiology. 2012. PMID: 22241825 Free PMC article.
-
Characterization of the single-subunit oligosaccharyltransferase STT3A from Trypanosoma brucei using synthetic peptides and lipid-linked oligosaccharide analogs.Glycobiology. 2017 Jun 1;27(6):525-535. doi: 10.1093/glycob/cwx017. Glycobiology. 2017. PMID: 28204532 Free PMC article.
-
Structural Insight into the Mechanism of N-Linked Glycosylation by Oligosaccharyltransferase.Biomolecules. 2020 Apr 17;10(4):624. doi: 10.3390/biom10040624. Biomolecules. 2020. PMID: 32316603 Free PMC article. Review.
-
N-linked protein glycosylation in the endoplasmic reticulum.Cold Spring Harb Perspect Biol. 2013 Aug 1;5(8):a013359. doi: 10.1101/cshperspect.a013359. Cold Spring Harb Perspect Biol. 2013. PMID: 23751184 Free PMC article. Review.
Cited by
-
Generation of a bloodstream form Trypanosoma brucei double glycosyltransferase null mutant competent in receptor-mediated endocytosis of transferrin.PLoS Pathog. 2024 Jun 27;20(6):e1012333. doi: 10.1371/journal.ppat.1012333. eCollection 2024 Jun. PLoS Pathog. 2024. PMID: 38935804 Free PMC article.
-
The endoplasmic reticulum of trypanosomatids: An unrevealed road for chemotherapy.Front Cell Infect Microbiol. 2022 Nov 10;12:1057774. doi: 10.3389/fcimb.2022.1057774. eCollection 2022. Front Cell Infect Microbiol. 2022. PMID: 36439218 Free PMC article. Review.
-
Recent Chemical and Chemoenzymatic Strategies to Complex-Type N-Glycans.Front Chem. 2022 May 26;10:880128. doi: 10.3389/fchem.2022.880128. eCollection 2022. Front Chem. 2022. PMID: 35720985 Free PMC article. Review.
-
Biogenesis of Asparagine-Linked Glycoproteins Across Domains of Life-Similarities and Differences.ACS Chem Biol. 2018 Apr 20;13(4):833-837. doi: 10.1021/acschembio.8b00163. Epub 2018 Feb 26. ACS Chem Biol. 2018. PMID: 29481041 Free PMC article. No abstract available.
-
Common and unique features of glycosylation and glycosyltransferases in African trypanosomes.Biochem J. 2022 Sep 16;479(17):1743-1758. doi: 10.1042/BCJ20210778. Biochem J. 2022. PMID: 36066312 Free PMC article.
References
-
- Lowe J. B., and Marth J. D. (2003) A genetic approach to mammalian glycan function. Annu. Rev. Biochem. 72, 643–691 - PubMed
-
- Helenius A., and Aebi M. (2004) Roles of N-linked glycans in the endoplasmic reticulum. Annu. Rev. Biochem. 73, 1019–1049 - PubMed
-
- Burda P., and Aebi M. (1999) The dolichol pathway of N-linked glycosylation. Biochim. Biophys. Acta 1426, 239–257 - PubMed
-
- Yan Q., and Lennarz W. J. (2002) Studies on the function of oligosaccharyl transferase subunits. Stt3p is directly involved in the glycosylation process. J. Biol. Chem. 277, 47692–47700 - PubMed
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases