MESOSCOPIC MODELING OF STOCHASTIC REACTION-DIFFUSION KINETICS IN THE SUBDIFFUSIVE REGIME
- PMID: 29046618
- PMCID: PMC5642307
- DOI: 10.1137/15M1013110
MESOSCOPIC MODELING OF STOCHASTIC REACTION-DIFFUSION KINETICS IN THE SUBDIFFUSIVE REGIME
Abstract
Subdiffusion has been proposed as an explanation of various kinetic phenomena inside living cells. In order to fascilitate large-scale computational studies of subdiffusive chemical processes, we extend a recently suggested mesoscopic model of subdiffusion into an accurate and consistent reaction-subdiffusion computational framework. Two different possible models of chemical reaction are revealed and some basic dynamic properties are derived. In certain cases those mesoscopic models have a direct interpretation at the macroscopic level as fractional partial differential equations in a bounded time interval. Through analysis and numerical experiments we estimate the macroscopic effects of reactions under subdiffusive mixing. The models display properties observed also in experiments: for a short time interval the behavior of the diffusion and the reaction is ordinary, in an intermediate interval the behavior is anomalous, and at long times the behavior is ordinary again.
Keywords: 35K57; 60J60; 92C45; anomalous kinetics; continuous-time random walk; fractional derivative; multistate reaction-diffusion system; subdiffusion.
Figures









Similar articles
-
Subdiffusion-limited fractional reaction-subdiffusion equations with affine reactions: Solution, stochastic paths, and applications.Phys Rev E. 2020 Oct;102(4-1):042125. doi: 10.1103/PhysRevE.102.042125. Phys Rev E. 2020. PMID: 33212732
-
Fractional-time random walk subdiffusion and anomalous transport with finite mean residence times: faster, not slower.Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Aug;86(2 Pt 1):021113. doi: 10.1103/PhysRevE.86.021113. Epub 2012 Aug 13. Phys Rev E Stat Nonlin Soft Matter Phys. 2012. PMID: 23005728
-
Fractional chemotaxis diffusion equations.Phys Rev E Stat Nonlin Soft Matter Phys. 2010 May;81(5 Pt 1):051102. doi: 10.1103/PhysRevE.81.051102. Epub 2010 May 4. Phys Rev E Stat Nonlin Soft Matter Phys. 2010. PMID: 20866180
-
Subdiffusion-reaction processes with A→B reactions versus subdiffusion-reaction processes with A+B→B reactions.Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Sep;90(3):032136. doi: 10.1103/PhysRevE.90.032136. Epub 2014 Sep 25. Phys Rev E Stat Nonlin Soft Matter Phys. 2014. PMID: 25314424
-
Subdiffusion equation with fractional Caputo time derivative with respect to another function in modeling transition from ordinary subdiffusion to superdiffusion.Phys Rev E. 2023 Jun;107(6-1):064103. doi: 10.1103/PhysRevE.107.064103. Phys Rev E. 2023. PMID: 37464604
Cited by
-
Stochastic self-tuning hybrid algorithm for reaction-diffusion systems.J Chem Phys. 2019 Dec 28;151(24):244117. doi: 10.1063/1.5125022. J Chem Phys. 2019. PMID: 31893874 Free PMC article.
-
Mesoscopic-microscopic spatial stochastic simulation with automatic system partitioning.J Chem Phys. 2017 Dec 21;147(23):234101. doi: 10.1063/1.5002773. J Chem Phys. 2017. PMID: 29272930 Free PMC article.
-
Perspective: Stochastic algorithms for chemical kinetics.J Chem Phys. 2013 May 7;138(17):170901. doi: 10.1063/1.4801941. J Chem Phys. 2013. PMID: 23656106 Free PMC article.
-
Multiscale Modeling of Diffusion in a Crowded Environment.Bull Math Biol. 2017 Nov;79(11):2672-2695. doi: 10.1007/s11538-017-0346-6. Epub 2017 Sep 18. Bull Math Biol. 2017. PMID: 28924915 Free PMC article.
-
Single molecule simulations in complex geometries with embedded dynamic one-dimensional structures.J Chem Phys. 2013 Jul 7;139(1):014103. doi: 10.1063/1.4811395. J Chem Phys. 2013. PMID: 23822289 Free PMC article.
References
-
- Berkowitz Y, Edery Y, Scher H, Berkowitz B. Fickian and non-Fickian diffusion with bimolecular reactions. Phys Rev E. 2013;87:032812.
-
- Blanc E. Approximation of the diffusive representation by decreasing exponential functions. Department of Information Technology, Uppsala University; 2015. (Tech Rep 2015-009).
-
- Blinov ML, Faeder JR, Goldstein B, Hlavacek WS. BioNetGen: software for rule-based modeling of signal transduction based on the interactions of molecular domains. Bioinformatics. 2004;20(17):3289–3291. - PubMed
-
- Bray D. Molecular prodigality. Science. 2003;299(5610):1189–1190. - PubMed
-
- Caputo M. Linear models of dissipation whose Q is almost frequency independent, part 2. Geophys J R Astr Soc. 1967;13:529–539.
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources