Rethinking Skin Lesion Segmentation in a Convolutional Classifier
- PMID: 29047032
- PMCID: PMC6113155
- DOI: 10.1007/s10278-017-0026-y
Rethinking Skin Lesion Segmentation in a Convolutional Classifier
Abstract
Melanoma is a fatal form of skin cancer when left undiagnosed. Computer-aided diagnosis systems powered by convolutional neural networks (CNNs) can improve diagnostic accuracy and save lives. CNNs have been successfully used in both skin lesion segmentation and classification. For reasons heretofore unclear, previous works have found image segmentation to be, conflictingly, both detrimental and beneficial to skin lesion classification. We investigate the effect of expanding the segmentation border to include pixels surrounding the target lesion. Ostensibly, segmenting a target skin lesion will remove inessential information, non-lesion skin, and artifacts to aid in classification. Our results indicate that segmentation border enlargement produces, to a certain degree, better results across all metrics of interest when using a convolutional based classifier built using the transfer learning paradigm. Consequently, preprocessing methods which produce borders larger than the actual lesion can potentially improve classifier performance, more than both perfect segmentation, using dermatologist created ground truth masks, and no segmentation altogether.
Keywords: Convolutional neural networks; Deep learning; Machine learning; Medical decision support systems; Medical image analysis; Skin lesions.
Figures



Similar articles
-
Skin lesion segmentation in dermoscopy images via deep full resolution convolutional networks.Comput Methods Programs Biomed. 2018 Aug;162:221-231. doi: 10.1016/j.cmpb.2018.05.027. Epub 2018 May 19. Comput Methods Programs Biomed. 2018. PMID: 29903489
-
Skin lesion classification with ensembles of deep convolutional neural networks.J Biomed Inform. 2018 Oct;86:25-32. doi: 10.1016/j.jbi.2018.08.006. Epub 2018 Aug 10. J Biomed Inform. 2018. PMID: 30103029
-
Digital hair segmentation using hybrid convolutional and recurrent neural networks architecture.Comput Methods Programs Biomed. 2019 Aug;177:17-30. doi: 10.1016/j.cmpb.2019.05.010. Epub 2019 May 15. Comput Methods Programs Biomed. 2019. PMID: 31319945
-
Deep Learning Approaches Towards Skin Lesion Segmentation and Classification from Dermoscopic Images - A Review.Curr Med Imaging. 2020;16(5):513-533. doi: 10.2174/1573405615666190129120449. Curr Med Imaging. 2020. PMID: 32484086 Review.
-
A survey on deep learning for skin lesion segmentation.Med Image Anal. 2023 Aug;88:102863. doi: 10.1016/j.media.2023.102863. Epub 2023 Jun 9. Med Image Anal. 2023. PMID: 37343323 Review.
Cited by
-
Recurrent residual U-Net for medical image segmentation.J Med Imaging (Bellingham). 2019 Jan;6(1):014006. doi: 10.1117/1.JMI.6.1.014006. Epub 2019 Mar 27. J Med Imaging (Bellingham). 2019. PMID: 30944843 Free PMC article.
-
Skin Lesion Segmentation in Dermoscopic Images with Combination of YOLO and GrabCut Algorithm.Diagnostics (Basel). 2019 Jul 10;9(3):72. doi: 10.3390/diagnostics9030072. Diagnostics (Basel). 2019. PMID: 31295856 Free PMC article.
-
Melanoma Skin Cancer Detection Method Based on Adaptive Principal Curvature, Colour Normalisation and Feature Extraction with the ABCD Rule.J Digit Imaging. 2020 Jun;33(3):574-585. doi: 10.1007/s10278-019-00316-x. J Digit Imaging. 2020. PMID: 31848895 Free PMC article.
-
Transfer learning for medical image classification: a literature review.BMC Med Imaging. 2022 Apr 13;22(1):69. doi: 10.1186/s12880-022-00793-7. BMC Med Imaging. 2022. PMID: 35418051 Free PMC article. Review.
-
Medical Image Segmentation with Learning Semantic and Global Contextual Representation.Diagnostics (Basel). 2022 Jun 25;12(7):1548. doi: 10.3390/diagnostics12071548. Diagnostics (Basel). 2022. PMID: 35885454 Free PMC article.
References
-
- Siegel RL, Miller KD, Jemal A: Cancer statistics, 2016. CA: Cancer J Clin 66(1):7–30, 2016 - PubMed
-
- Guy GP Jr, Ekwueme DU: Years of potential life lost and indirect costs of melanoma and non-melanoma skin cancer. Pharmacoeconomics 29(10):863–874, 2011 - PubMed
-
- Argenziano G, Fabbrocini G, Carli P, De Giorgi V, Sammarco E, Delfino M. Epiluminescence microscopy for the diagnosis of doubtful melanocytic skin lesions: comparison of the ABCD rule of dermatoscopy and a new 7-point checklist based on pattern analysis. Arch Dermatol. 1998;134:1563–1570. doi: 10.1001/archderm.134.12.1563. - DOI - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical