Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2018 Jan:126:39-43.
doi: 10.1016/j.neures.2017.10.004. Epub 2017 Oct 17.

Astrocyte reactivity and astrogliosis after spinal cord injury

Affiliations
Review

Astrocyte reactivity and astrogliosis after spinal cord injury

Seiji Okada et al. Neurosci Res. 2018 Jan.

Abstract

After traumatic injuries of the central nervous system (CNS), including spinal cord injury (SCI), astrocytes surrounding the lesion become reactive and typically undergo hypertrophy and process extension. These reactive astrocytes migrate centripetally to the lesion epicenter and aid in the tissue repair process, however, they eventually become scar-forming astrocytes and form a glial scar which produces axonal growth inhibitors and prevents axonal regeneration. This sequential phenotypic change has long been considered to be unidirectional and irreversible; thus glial scarring is one of the main causes of the limited regenerative capability of the CNS. We recently demonstrated that the process of glial scar formation is regulated by environmental cues, such as fibrotic extracellular matrix material. In this review, we discuss the role and mechanism underlying glial scar formation after SCI as well as plasticity of astrogliosis, which helps to foster axonal regeneration and functional recovery after CNS injury.

Keywords: Astrocytes; Axonal regeneration; Glial scar; Laser microdissection; Spinal cord injury.

PubMed Disclaimer

LinkOut - more resources