Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Nov 15;9(45):39830-39838.
doi: 10.1021/acsami.7b13103. Epub 2017 Nov 2.

Employing Calcination as a Facile Strategy to Reduce the Cytotoxicity in CoFe2O4 and NiFe2O4 Nanoparticles

Affiliations

Employing Calcination as a Facile Strategy to Reduce the Cytotoxicity in CoFe2O4 and NiFe2O4 Nanoparticles

Débora R Lima et al. ACS Appl Mater Interfaces. .

Abstract

CoFe2O4 and NiFe2O4 nanoparticles (NPs) represent promising candidates for biomedical applications. However, in these systems, the knowledge over how various physical and chemical parameters influence their cytotoxicity remains limited. In this article, we investigated the effect of different calcination temperatures over cytotoxicity of CoFe2O4 and NiFe2O4 NPs, which were synthesized by a sol-gel proteic approach, toward L929 mouse fibroblastic cells. More specifically, we evaluated and compared CoFe2O4 and NiFe2O4 NPs presenting low crystallinity (that were calcined at 400 and 250 °C, respectively) with their highly crystalline counterparts (that were calcined at 800 °C). We found that the increase in the calcination temperature led to the reduction in the concentration of surface defect sites and/or more Co or Ni atoms located at preferential crystalline sites in both cases. A reduction in the cytotoxicity toward mouse fibroblast L929 cells was observed after calcination at 800 °C. Combining with inductively coupled plasma mass spectrometry data, our results indicate that the calcination temperature can be employed as a facile strategy to reduce the cytotoxicity of CoFe2O4 and NiFe2O4, in which higher temperatures contributed to the decrease in the dissolution of Co2+ or Ni2+ from the NPs. We believe these results may shed new insights into the various parameters that influence cytotoxicity in ferrite NPs, which may pave the way for their widespread applications in biomedicine.

Keywords: CoFe2O4; NiFe2O4; cytotoxicity; ferrites; nanoparticles.

PubMed Disclaimer

LinkOut - more resources