Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Dec 1;199(11):3748-3756.
doi: 10.4049/jimmunol.1700667. Epub 2017 Oct 23.

Thymic-Specific Serine Protease Limits Central Tolerance and Exacerbates Experimental Autoimmune Encephalomyelitis

Affiliations

Thymic-Specific Serine Protease Limits Central Tolerance and Exacerbates Experimental Autoimmune Encephalomyelitis

Laurent Serre et al. J Immunol. .

Abstract

The genetic predisposition to multiple sclerosis (MS) is most strongly conveyed by MHC class II haplotypes, possibly by shaping the autoimmune CD4 T cell repertoire. Whether Ag-processing enzymes contribute to MS susceptibility by editing the peptide repertoire presented by these MHC haplotypes is unclear. Thymus-specific serine protease (TSSP) is expressed by thymic epithelial cells and thymic dendritic cells (DCs) and, in these two stromal compartments, TSSP edits the peptide repertoire presented by class II molecules. We show in this article that TSSP increases experimental autoimmune encephalomyelitis severity by limiting central tolerance to myelin oligodendrocyte glycoprotein. The effect on experimental autoimmune encephalomyelitis severity was MHC class II allele dependent, because the lack of TSSP expression conferred protection in NOD mice but not in C57BL/6 mice. Importantly, although human thymic DCs express TSSP, individuals segregate into two groups having a high or 10-fold lower level of expression. Therefore, the level of TSSP expression by thymic DCs may modify the risk factors for MS conferred by some MHC class II haplotypes.

PubMed Disclaimer

Publication types

MeSH terms

Substances