Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Nov 8;139(44):15868-15877.
doi: 10.1021/jacs.7b08749. Epub 2017 Oct 24.

Enantioselective Total Synthesis of Antibiotic CJ-16,264, Synthesis and Biological Evaluation of Designed Analogues, and Discovery of Highly Potent and Simpler Antibacterial Agents

Affiliations

Enantioselective Total Synthesis of Antibiotic CJ-16,264, Synthesis and Biological Evaluation of Designed Analogues, and Discovery of Highly Potent and Simpler Antibacterial Agents

K C Nicolaou et al. J Am Chem Soc. .

Abstract

An improved and enantioselective total synthesis of antibiotic CJ-16,264 through a practical kinetic resolution and an iodolactonization reaction to form the iodo pyrrolizidinone fragment of the molecule is described. A series of racemic and enantiopure analogues of CJ-16,264 was designed and synthesized through the developed synthetic technologies and tested against drug-resistant bacterial strains. These studies led to interesting structure-activity relationships and the identification of a number of simpler, and yet equipotent, or even more potent, antibacterial agents than the natural product, thereby setting the foundation for further investigations in the quest for new anti-infective drugs.

PubMed Disclaimer

Conflict of interest statement

Notes

The authors declare no competing financial interest.

Figures

Figure 1
Figure 1
Molecular structures of antibiotic CJ-16,264 [(+)-1], its originally assigned structure [(+)-1a], and other related pyrrolizidine natural products CJ-16,367 (A), pyrrolizilactone (B), UCS-1025A (C), and UCS-1025B (D).
Figure 2
Figure 2
Synthesized analogues of antibiotic CJ-16,264 [(±)-2–(±)-6, 7, (±)-8–(±)-12, (−)-1, (−)-1b, (−)-1c, (+)-1c, (+)-1d, (−)-13–(−)-15, (+)-16, (+)-7, (+)-17, (−)-18, (+)-19, (+)-8, and (+)-20].
Figure 3
Figure 3
Previous strategy employed in the first total synthesis of CJ-16,264 [(+)-1] presented in retrosynthetic format; TBS = tert-butyldimethylsilyl.
Figure 4
Figure 4
Previous approaches to the racemic iodo pyrrolizidinone core [(±)-21, panel A], enantiopure iodo pyrrolizidinone core [(−)-21, panel B] and [(−)-21, panel C].
Figure 5
Figure 5
Proposed enantioselective synthesis of iodo pyrrolizidinone (+)-21 based on diastereofacial iodolactonisation strategy.
Scheme 1
Scheme 1. Enantioselective Iodolactonization of Amide Derivatives to Iodo Pyrrolizidinone (+)-21a
aReagents and conditions: (a) (±)-29 (1.0 equiv), 34a (1.2 equiv), PivCl (1.05 equiv), LiCl (1.7 equiv), Et3N (2.5 equiv), CH2Cl2, −20 °C, 6 h, 35a+36a (82%, 1:1 dr); (b) (±)-29 (1.0 equiv), 34b (1.2 equiv), PivCl (1.05 equiv), LiCl (1.7 equiv), Et3N (2.5 equiv), CH2Cl2, −20 °C, 6 h, 35b+36b (87%, 1:1 dr); (c) (±)-29 (1.0 equiv), EDCI (1.5 equiv), HOAt (1.0 equiv), 34c (2.0 equiv), i-Pr2NEt (3.0 equiv), CH2Cl2, 0 → 25 °C, 16 h, 35c+36c (68%, 1:1 dr); (d) (±)-29 (1.0 equiv), EDCI (1.5 equiv), HOAt (1.0 equiv), 34d (1.0 equiv), i-Pr2NEt (3.0 equiv), CH2Cl2, 0 → 25 °C, 24 h, 35d (42%); (e) I(sym-collidine)2ClO4 (5.0 equiv), CH2Cl2:MeOH:H2O 1:1:0.05 (v/v/v), 25°C, 7 d, 3%, (98:2 er) from 35b; 72 h, 28% (24:76 er) from 35c+36c; 47%, 73% brsm (>99:1 er) from 35d. PivCl = pivaloyl chloride; EDCI = 3-(ethyliminomethyleneamino)-N,N-dimethylpropan-1-amine, HOAt = 3-hydroxytriazolo[4,5-b]pyridine.
Scheme 2
Scheme 2. Enantioselective Synthesis of Iodo Pyrrolizidinone (+)-21a
aReagents and conditions: (a) (±)-29 (1.0 equiv), EDCI (1.5 equiv), HOAt (1.0 equiv), (−)-34d (0.6 equiv), i-Pr2NEt (3.0 equiv), CH2Cl2, 0°C, 48 h, 75% based on 34d, 45% based on (±)-29; (b) I(sym-collidine)2ClO4 (5.0 equiv), CH2Cl2:MeOH:H2O 1:1:0.05 (v/v/v), 25 °C, 72 h, 47% (73% brsm); (c) I2 (3.0 equiv), NaHCO3 aq:Et2O 1:1 (v/v), 25 °C, 24 h, 74%.
Scheme 3
Scheme 3. Total Synthesis of CJ-16,264 [(+)-1]a
aReagents and conditions: (a) (+)-21 (1.0 equiv), (−)-22 (2.0 equiv), BEt3 (1.1 equiv), toluene, −78 °C, 6 h, 82%; (b) TBAF (1.0 equiv), AcOH (1.05 equiv), THF, 0 °C, 30 min, 88%; (c) IBX (5.0 equiv), EtOAc, 70 °C, 9 h, 68%; (d) DMP (1.5 equiv), CH2Cl2, 0 → 25 °C, 2 h, 83%; BEt3 = triethyl borane, IBX = 2-iodoxybenzoic acid, DMP = Dess–Martin periodinane.
Scheme 4
Scheme 4. Synthesis of CJ-16,264 Analogues (±)-2–7a
aReagents and conditions: (a) TASF (1.8 equiv), THF, 0 °C, 5 min, 35%; (b) (±)-21 (1.0 equiv), 38 (5.0 equiv), BEt3 (1.0 equiv), toluene, −78 °C, 6 h, 83%; (c) TASF (1.5 equiv), THF, 0 °C, 5 min, 88%; (d) IBX (5.0 equiv), EtOAc, 70 °C, 6 h, 57%; (e) (±)-21 (1.0 equiv), 41 (3.0 equiv), BEt3 (1.1 equiv), toluene, −78 °C, 6 h, 72%; (f) TBAF (1.0 equiv), THF, 0 °C, 5 min, 90%; (g) IBX (6.0 equiv), EtOAc, 70 °C, 6 h, 54%; (h) (±)-21 (1.0 equiv), 44 (5.0 equiv), BEt3 (1.0 equiv), toluene, −78 °C, 6 h, quant; (i) TASF (1.5 equiv), THF, 0 °C, 5 min, 66%; (j) DMP (1.5 equiv), CH2Cl2, 0 °C, 1.5 h, 63%; (k) (±)-21 (1.0 equiv), 47 (3.0 equiv), BEt3 (1.1 equiv), toluene, −78 °C, 6 h, quant; (l) TASF (1.5 equiv), THF, 0 °C, 5 min, 56%; (m) DMP (1.5 equiv), CH2Cl2, 0 °C, 1.5 h, 61%; (n) (±)-21 (1.0 equiv), 50 (3.0 equiv), BEt3 (1.0 equiv), toluene, −78 °C, 6 h, 81% (1:1 dr); (o) TASF (1.5 equiv), THF, 0 °C, 5 min, 68% (1:1 dr); (p) DMP (1.5 equiv), CH2Cl2, 0 °C, 1.5 h, 63% (1:1 dr); TASF = tris(dimethylamino)sulfonium difluorotrimethylsilicate.
Scheme 5
Scheme 5. Synthesis of CJ-16,264 Analogues (±)-8 and (±)-9 (A) and Tentative Mechanism for the Formation of (±)-9 (B)a
aReagents and conditions: (a) (±)-21 (1.0 equiv), 53 (3.0 equiv), BEt3 (1.0 equiv), toluene, −78 °C, 6 h, 84%; (b) TBAF (1.0 equiv), THF, 0 °C, 5 min, 72%; (c) DMP (1.5 equiv), CH2Cl2, 0 °C, 1.5 h, (±)-8 (24%), (±)-9 (11%); (d) IBX (5.0 equiv), EtOAc, 70 °C, 5 h, 58%; compound VI is a common contaminant of Dess–Martin reagent, either arising from incomplete acetylation of IBX during its preparation or due to partial hydrolysis of DMP; TBAF = tetra-n-butylammonium fluoride.
Scheme 6
Scheme 6. Synthesis of CJ-16,264 Analogue (±)-10a
aReagents and conditions: (a) (±)-42 (1.0 equiv), 59 (6.0 equiv), Grubbs II catalyst 56 (0.10 equiv), CH2Cl2, 40 °C, 24 h, 48%, 86% brsm; (b) TBAF (1.0 equiv), THF, 0 °C, 5 min, 62%; (c) IBX (5.0 equiv), EtOAc, 70 °C, 2 h, 24%; d) 57 (1.0 equiv), (COCl)2 (2.0 equiv), CH2Cl2, 0 → 25 °C, 3h; Et3N (3.0 equiv), morpholine (2.0 equiv), CH2Cl2, 0 → 25 °C, 9 h, 75%; (e) LiAlH4 (2.0 equiv), THF, 85°C, 12 h, 80%.
Scheme 7
Scheme 7. Synthesis of CJ-16,264 Analogue (±)-11a
aReagents and conditions: (a) 62 (3.0 equiv), Grubbs II catalyst 56 (0.2 equiv), CH2Cl2, 25 °C, 24 h, 63%; (b) TBAF (1.0 equiv), AcOH (2.0 equiv), THF, 0 °C, 5 min, 82%; (c) MNBA (1.4 equiv), DMAP (3.0 equiv), CH2Cl2, 25 °C, 12 h, 84%; (d) IBX (5.0 equiv), EtOAc, 70°C, 7 h, 48%; MNBA = 2-methyl-6-nitrobenzoic anhydride, DMAP = N,N-dimethylpyridin-4-amine.
Scheme 8
Scheme 8. Synthesis of CJ-16,264 Analogue (±)-12a
aReagents and conditions: (a) 40 (1.0 equiv), 66 (1.0 equiv), 67 (1.0 equiv), Et3N (3.0 equiv), DMAP (2.0 equiv), CH2Cl2, 0 °C, 3 h, 39%; (b) IBX (5.0 equiv), EtOAc, 70 °C, 6 h, 47%.
Scheme 9
Scheme 9. Synthesis of CJ-16,264 Analogue (−)-13a
aReagents and conditions: (a) DMP (3.0 equiv), CH2Cl2, 0 → 25 °C, 45 min, 61% (ca. 1:1 dr); (b) TASF (10 equiv), THF, 0 °C, 5 min, 33%.
Scheme 10
Scheme 10. Synthesis of CJ-16,264 Analogues (−)-15, (+)-17, and (+)-7a
aReagents and conditions: (a) (+)-21 (1.0 equiv), 71 (3.0 equiv), BEt3 (1.3 equiv), toluene, −78 °C, 6 h, 66%; (b) TBAF (1.0 equiv), THF, 0°C, 5 min, 67%; (c) DMP (1.5 equiv), CH2Cl2, 0 °C, 1.5 h, 55%; (d) (+)-21 (1.0 equiv), 72 (3.0 equiv), BEt3 (1.3 equiv), toluene, −78 °C, 6 h, 81%; (e) TBAF (1.0 equiv), THF, 0 °C, 5 min, 64%; (f) DMP (1.5 equiv), CH2Cl2, 0 °C, 1.5 h, 60%; (g) (+)-21 (1.0 equiv), 73 (3.0 equiv), BEt3 (1.3 equiv), toluene, −78 °C, 6 h, 70%; (h) TBAF (1.0 equiv), THF, 0 °C, 5 min, 77%; (i) DMP (1.5 equiv), CH2Cl2, 0 °C, 1.5 h, 60%.
Scheme 11
Scheme 11. Synthesis of CJ-16,264 Analogue (+)-17a
aReagents and conditions: (a) 81 (2.1 equiv), 80 (1.0 equiv), LDA (4.0 equiv), LiCl (12.7 equiv), THF, 0 °C, 24 h, 85%; (b) LDA (3.9 equiv), H3N·BH3 (4.0 equiv), THF, 0 → 25 °C, 6 h, 72%; (c) DMP (1.5 equiv), CH2Cl2, 0 → 25 °C, 1 h, 82%; (d) (+)-21 (1.0 equiv), 84 (3.0 equiv), BEt3 (1.3 equiv), toluene, −78 °C, 6 h, 63%; (e) TBAF (1.3 equiv), THF, 0 °C, 5 min, 85%; (f) DMP (1.5 equiv), CH2Cl2, 0 °C, 2 h, 61%; LDA = lithium diisopropylazanide.
Scheme 12
Scheme 12. Synthesis of CJ-16,264 Analogue (+)-18 and (+)-19a
aReagents and conditions: (a) (+)-21 (1.0 equiv), 87 (3.0 equiv), BEt3 (1.0 equiv), toluene, −78 °C, 6 h, 83%; (b) TBAF (1.1 equiv), AcOH (1.1 equiv), THF, 0 °C, 15 min, 87%; (c) DMP (2.0 equiv), CH2Cl2, 0 → 25 °C, 3 h, (−)-18 (46%), (+)-19 (11%, one C7′ epimer); (d) IBX (5.0 equiv), EtOAc, 70 °C, 7 h, 83%; (e) DMP (6.0 equiv), CH2Cl2, 25°C, 6 h, 58%.
Scheme 13
Scheme 13. Synthesis of CJ-16,264 Analogues (+)-8 and (+)-20a
aReagents and conditions: (a) (+)-21 (1.0 equiv), 53 (2.0 equiv), BEt3 (1.3 equiv), toluene, −78 °C, 6 h, 77%; (b) TBAF (1.0 equiv), THF, 0 °C, 5 min, 66%; (c) MnO2 (40 equiv), CH2Cl2, 25 °C, 10 h, 39%, 72% brsm; (d) (+)-21 (1.0 equiv), 90 (2.0 equiv), BEt3 (1.3 equiv), toluene, −78 °C, 6 h, 69%; (e) TBAF (1.0 equiv), THF, 0 °C, 5 min, 67%; (f) MnO2 (40 equiv), CH2Cl2, 25 °C, 10 h, 44%, 66% brsm.

Similar articles

Cited by

References

    1. Nicolaou KC, Rigol S. J Antibiot. 2018 doi: 10.1038/ja.2017.62. - DOI - PubMed
    1. Nicolaou KC, Shah AA, Korman H, Khan T, Shi L, Worawalai W, Theodorakis EA. Angew Chem, Int Ed. 2015;54:9203–9208. - PMC - PubMed
    1. Sugie Y, Hirai H, Kachi-Tonai H, Kim YJ, Kojima Y, Shiomi Y, Sugiura A, Sugiura A, Suzuki Y, Yoshikawa N, Brennan L, Duignan J, Huang LH, Sutcliffe J, Kojima N. J Antibiot. 2001;54:917–925. - PubMed
    1. Nogawa T, Kawatani M, Uramoto M, Okano A, Aono H, Futamura Y, Koshino H, Takahashi S, Osada H. J Antibiot. 2013;66:621–623. - PubMed
    1. Nakai R, Ogawa H, Asai A, Ando K, Agatsuma T, Matsumiya S, Akinaga S, Yamashita Y, Mizukami T. J Antibiot. 2000;53:294–296. - PubMed
    2. Agatsuma T, Akama T, Nara S, Matsumiya S, Nakai R, Ogawa H, Otaki S, Ikeda S-i, Saitoh Y, Kanda Y. Org Lett. 2002;4:4387–4390. - PubMed
    3. Lambert TH, Danishefsky SJ. J Am Chem Soc. 2006;128:426–427. - PubMed
    4. Hoye TR, Dvornikovs V. J Am Chem Soc. 2006;128:2550–2551. - PubMed
    5. de Figueiredo RM, Fröhlich R, Christmann M. Angew Chem, Int Ed. 2007;46:2883–2886. - PubMed
    6. Sizova EP. PhD Dissertation. University of Minnesota; Minneapolis, MN: 2009. Second Generation Synthesis of UCS1025A. Synthetic Efforts Toward Total Syntheses of CJ-16,264 and Phomopsichalasin.
    7. Uchida K, Ogawa T, Yasuda Y, Mimura H, Fujimoto T, Fukuyama T, Wakimoto T, Asakawa T, Hamashima Y, Kan T. Angew Chem, Int Ed. 2012;51:12850–12853. - PubMed

Publication types

MeSH terms