Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Dec 12;33(49):13990-13995.
doi: 10.1021/acs.langmuir.7b01350. Epub 2017 Nov 27.

Superhydrophobicity from the Inside

Affiliations

Superhydrophobicity from the Inside

Tomer Simovich et al. Langmuir. .

Abstract

The nature of trapped air on submersed ultra-water-repellent interfaces has been investigated. These gaseous layers (plastrons) can last from hours to, in some examples such as the Salvinia molesta fern, months. The interface of submerged superhydrophobic surfaces with carefully controlled micropatterned surface roughness has been probed using synchrotron-based high-resolution X-ray phase tomography. This technique looks in situ, through the aqueous/gas interface in three dimensions. Long-term plastron stability appears to correlate with the appearance of scattered microdroplets <20 μm in diameter that are sandwiched within the 30 μm thick gaseous interfacial layer. These microdroplets are centered on defects or damaged sections within the substrate surface approximately 20-50 μm apart. Such irregularities represent heterogeneous micro/nano-hierarchical structures with varying surface structures and chemistry. The stability of microdroplets is governed by a combination of electrostatic repulsion, contact angle limitations, and a saturated vapor pressure, the latter of which reduces the rate of diffusion of gas out of the air layer, thus increasing underwater longevity. Homogenous surfaces exhibiting purely nano- or micro-regularity do not support such microdroplets, and, as a consequence, plastrons can disappear in <20 h compared with >160 h for surfaces with scattered microdroplets. Such behavior may be a requirement for long-term nonwetting in any system.

PubMed Disclaimer

Publication types

LinkOut - more resources