Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1988 Sep-Oct;16(5):701-6.

Enzymatic conjugation of hexachloro-1,3-butadiene with glutathione. Formation of 1-(glutathion-S-yl)-1,2,3,4,4-pentachlorobuta-1,3-diene and 1,4-bis(glutathion-S-yl)-1,2,3,4-tetrachlorobuta-1,3-diene

Affiliations
  • PMID: 2906593

Enzymatic conjugation of hexachloro-1,3-butadiene with glutathione. Formation of 1-(glutathion-S-yl)-1,2,3,4,4-pentachlorobuta-1,3-diene and 1,4-bis(glutathion-S-yl)-1,2,3,4-tetrachlorobuta-1,3-diene

W Dekant et al. Drug Metab Dispos. 1988 Sep-Oct.

Abstract

The glutathione-dependent metabolism of the nephrotoxin and nephrocarcinogen hexachloro-1,3-butadiene (HCBD) was investigated in subcellular fractions from rat liver and kidney. HCBD was metabolized by hepatic glutathione S-transferases to (E)- and (Z)-1-(glutathion-S-yl)-pentachlorobuta-1,3-diene (GPCB) in a ratio of 20:1, which were identified by secondary ion MS and by GC-MS after acid hydrolysis. The formation of GPCB was dependent on time and on protein and glutathione concentrations. Microsomal glutathione S-transferases from rat liver catalyzed GPCB formation more efficiently than did cytosolic glutathione S-transferases; very low rates of GPCB formation were observed in kidney subcellular fractions. GPCB is also a substrate for glutathione S-transferases and is metabolized to a diglutathione conjugate, which was identified by secondary ion MS and 13C NMR spectrometry as 1,4-bis(glutathion-S-yl)-1,2,3,4-tetrachlorobuta-1,3-diene (BTCB). BTCB formation from GPCB was dependent on time and on protein, glutathione, and GPCB concentrations. Hepatic cytosol catalyzed BTCB formation more efficiently than did hepatic microsomes; significant amounts of BTCB were also formed in kidney cytosol. Hepatic formation of glutathione S-conjugates, translocation of the S-conjugates to the kidney, and renal processing to form reactive intermediates may be the cause of HCBD-induced nephrotoxicity and, perhaps, nephrocarcinogenicity.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources