Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Aug 3;8(42):72528-72543.
doi: 10.18632/oncotarget.19879. eCollection 2017 Sep 22.

Chronic high dose of captopril induces depressive-like behaviors in mice: possible mechanism of regulatory T cell in depression

Affiliations

Chronic high dose of captopril induces depressive-like behaviors in mice: possible mechanism of regulatory T cell in depression

Hyun-Sun Park et al. Oncotarget. .

Abstract

Major depression has various types of symptoms and disease courses with inconsistent response to monoamine-related antidepressants. Thus, monoamine theory may not be the only pathophysiologic pathway relevant to depression. Recently, it has been suggested that regulatory T cell (Treg) is associated with depression. Based on our previous study that showed decreased regulatory T cell (Treg) population following chronic high-dose captopril (CHC, 40 mg/kg/day * 21 days) administration, we examined whether CHC alone can induce depressive-like behaviors in mice even without stressful stimuli. In this study, we found that CHC induced depressive-like behaviors in tail suspension test (TST) and forced swimming test (FST) without systemic illness, while it did not induce anhedonic behavior, anxiety-like behaviors, or sociality-related behavior. The depressive-like behaviors were rescued by either CHC washout or antidepressant. CHC caused reduction in foxp3 and gata3 mRNA expression in the lymph nodes with elevation in plasma IL-1β and IL-6. Interestingly, CHC increased serum angiotensin II level. In the hippocampus, CHC increased TNF-α and IL-6 mRNA expression with microglia activation while reduced glucocorticoid receptor expression. However, CHC did not affect to hippocampal kynurenine pathway, serotonin level, hypothalamic corticotropin-releasing hormone mRNA level, or serum corticosterone level. Consequently, we propose that CHC may induce a specific form of depressive-like behaviors via Treg reduction and microglial activation.

Keywords: angiotensin II; captopril; cytokines; depression; regulatory T cell.

PubMed Disclaimer

Conflict of interest statement

CONFLICTS OF INTEREST We have no conflicts of interest to declare.

Figures

Figure 1
Figure 1. Chronic high-dose captopril (CHC) induced depressive-like behavior in mice
The time-course effect and dose-dependent effect of captopril were examined by observing depression-like behavior in mice by TST and FST. Mice were administrated with captopril (40 mg/kg) for 7, 14, 21 days and their behavior was assessed with TST (A) and FST (B) and n = 10 - 20 in each group. Mice were also administrated with 25 or 40 mg/kg of captopril for more than 21 days and their behavior was assessed with (C) TST and (D) FST and n = 10 - 20 in each group. Chronic high-dose captopril (CHC) is defined as 40 mg/kg of captopril in drinking water for 21 days or more and all behavior tests were performed within a week after CHC administration. Captopril administration was continued during behavioral test. The effect of captopril washout for 7 days after the end of CHC was assessed by TST (E) and FST (F) and n = 10 - 15 in each group. The effect of imipramine co-treatment (Co-Imi) during CHC was assessed by TST (G) and FST (H) and n = 22 – 27 in each group. The effect of imipramine post-treatment (Post-Imi) was assessed by TST (I) and FST (J) and n = 7 - 14 in each group. Sucrose preference test (SP) for 1 % sucrose solution over regular drinking water was examined for 2 days after 2 days of inhabitation to two bottle conditions (K). The data shown are mean ± SEM. * p < 0.05, ** p < 0.01, *** p < 0.001 compared with the controls. # p < 0. 05, ## p < 0.01, #### p < 0.0001 compared with the CHC- treated groups.
Figure 2
Figure 2. CHC-induced depressive-like behavior is associated with altered peripheral immune system
Mice were administrated with CHC (40 mg/ kg/ 21 days or more). Following the termination of CHC treatment, spleens of mice were analyzed with flow cytometry and expressed with percentage of CD4+ CD25+Foxp3+ cells to total lymphocytes (A) and n = 3 in each group. Mesenteric lymph nodes of mice were also dissected for quantitative reverse transcriptase polymerase chain reactions(qPCR) to assess transcription factors of T Helper 1 cells (tbx21), T Helper 2 cells (gata3) and regulatory T cells (foxp3) (B). n= 8 – 15 in each group. Serums of CHC mice and the controls were obtained to measure pro- and anti-inflammatory cytokines, such as TNF-α (C), IL-1β (D), IL-6 (E), IL-17 (F), IL-4 (G), IL-10 (H), IFN-γ(I), using Bio-Rad Bio-Plex® assay and circulating levels of angiotensin II (J) by Enzyme Immunoassay (EIA). n = 8 – 10 in each group. The data shown are mean ± SEM.* p < 0.05, *** p < 0.001 compared with the controls.
Figure 3
Figure 3. CHC increased inflammatory reaction in the hippocampus but not in the hypothalamus
Several markers involved in depression (bdnf, ido, kat, kmo), pro-inflammatory cytokines (tnf-α, il-1β, and il-6), serotonin receptors (5-HT1A and 5-HT2A), angiotensin receptors (AT1bR, AT1bR, and AT2R), and microglial phenotype (cx3cr1, cd200r, and p2ry12) were examined in the hippocampus (A) and n = 7 - 12 in each group. The mRNA expression levels of TNF-α and IL-6 (B) were measured by qPCR to identify the effect of imipramine co-treatment (Co-Imi). The CT values were normalized as a ratio as controls being 1 and RQ value refers to the ratio of respective transcription factors as a percentage of the controls. n = 7 - 12 in each group. An immunohistochemical study was performed to determine Iba-1 immunoreactivity in the hippocampus (C) in 20 X (left), 40 X (right) images and cells that are immunoreactive to Iba-1 were counted in same regions of dentate gyrus. n = 10 - 15 in each group. Scale bar = 100 μm. GR levels of the hippocampus (D) were assessed by western blot analysis and expression of GR was quantified using Image J. n= 5 in each group. The mRNA expressions of immunologic markers (E) such as IL-1β, IL-6, TNF-α in the hypothalamus were measured by qPCR. The CT values were normalized as a ratio as controls being 1 and RQ value refers to the ratio of respective transcription factors as a percentage of the controls. n = 5 in each group. Iba-1 immunoreactivity was also assessed in the hypothalamus (F) in 4 X images. The images were taken from bregma level - 0.46 mm (left) and bregma level - 2.06 mm (right). n = 10 - 15 in each group and shown images are representative images. Scale bar = 50 μm. * p < 0.05, ** p < 0.01 compared with the controls. # p < 0. 05, ## p < 0.01 compared with the CHC- treated groups.
Figure 4
Figure 4. CHC did not affect monoamine system and HPA axis in brain of mice
The levels of serotonin (5- hydroxytryptamine, 5-HT) (A) and hydroxyindoleacetic acid (HIAA) (B) were measured in hippocampus tissue of mice and n = 5 in each group. The mRNA expressions of CRH (corticotropin-releasing hormone) in the hypothalamus (C) were assessed by qPCR and n = 5 in each group. Serum glucocorticoid levels (d) were measured by EIA assay and n= 5 in each group. Data shown are mean ± SEM.

Similar articles

Cited by

References

    1. Ferrari AJ, Charlson FJ, Norman RE, Patten SB, Freedman G, Murray CJ, Vos T, Whiteford HA. Burden of depressive disorders by country, sex, age, and year: findings from the global burden of disease study 2010. PLoS Med. 2013;10:e1001547. https://doi.org/10.1371/journal.pmed.1001547 - DOI - PMC - PubMed
    1. Moussavi S, Chatterji S, Verdes E, Tandon A, Patel V, Ustun B. Depression, chronic diseases, and decrements in health: results from the World Health Surveys. Lancet. 2007;370:851–8. https://doi.org/10.1016/S0140-6736(07)61415-9 - DOI - PubMed
    1. Krishnan V, Nestler EJ. The molecular neurobiology of depression. Nature. 2008;455:894–902. https://doi.org/10.1038/nature07455 - DOI - PMC - PubMed
    1. Baghai TC, Moller HJ, Rupprecht R. Recent progress in pharmacological and non-pharmacological treatment options of major depression. Curr Pharm Des. 2006;12:503–15. https://doi.org/10.2174/138161206775474422 - DOI - PubMed
    1. Ruhe HG, Huyser J, Swinkels JA, Schene AH. Switching antidepressants after a first selective serotonin reuptake inhibitor in major depressive disorder: a systematic review. J Clin Psychiatry. 2006;67:1836–55. - PubMed

LinkOut - more resources