Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1986 Oct-Nov;1(1):23-7.

Protein engineering of cytochrome c by semisynthesis: substitutions at glutamic acid 66

Affiliations
  • PMID: 2907133

Protein engineering of cytochrome c by semisynthesis: substitutions at glutamic acid 66

C J Wallace et al. Protein Eng. 1986 Oct-Nov.

Abstract

We have used protein semisynthesis to prepare four analogues of horse cytochrome c, in which the glutamic acid residue at position 66 has been removed and replaced by norvaline, glutamine, lysine and, as a methodological control, glutamic acid. This residue is quite strongly conserved in mitochondrial cytochrome c, and forms part of a cluster of acidic residues that occurs in all cytochromes c but whose function is obscure. Comparative studies of the physical and biochemical properties of the analogues have now disclosed two specific roles for Glu66 in the protein. It contributes significantly to the stabilization of the active conformation of the protein, probably by salt bridge formation, and it appears to participate in the redox-state-dependent ATP-binding site of cytochrome c. Our results also support two general views of the role of surface charged residues in cytochrome c, namely that their disposition influences both redox potential, through the electrostatic field felt at the redox centre, and the kinetics of electron transfer, through the dipole moment they generate.

PubMed Disclaimer

Publication types