Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Multicenter Study
. 2018 Jan 16;137(3):273-282.
doi: 10.1161/CIRCULATIONAHA.116.024332. Epub 2017 Oct 26.

Derivation and Validation of the CREST Model for Very Early Prediction of Circulatory Etiology Death in Patients Without ST-Segment-Elevation Myocardial Infarction After Cardiac Arrest

Collaborators, Affiliations
Multicenter Study

Derivation and Validation of the CREST Model for Very Early Prediction of Circulatory Etiology Death in Patients Without ST-Segment-Elevation Myocardial Infarction After Cardiac Arrest

Karen E Bascom et al. Circulation. .

Abstract

Background: No practical tool quantitates the risk of circulatory-etiology death (CED) immediately after successful cardiopulmonary resuscitation in patients without ST-segment-elevation myocardial infarction. We developed and validated a prediction model to rapidly determine that risk and facilitate triage to individualized treatment pathways.

Methods: With the use of INTCAR (International Cardiac Arrest Registry), an 87-question data set representing 44 centers in the United States and Europe, patients were classified as having had CED or a combined end point of neurological-etiology death or survival. Demographics and clinical factors were modeled in a derivation cohort, and backward stepwise logistic regression was used to identify factors independently associated with CED. We demonstrated model performance using area under the curve and the Hosmer-Lemeshow test in the derivation and validation cohorts, and assigned a simplified point-scoring system.

Results: Among 638 patients in the derivation cohort, 121 (18.9%) had CED. The final model included preexisting coronary artery disease (odds ratio [OR], 2.86; confidence interval [CI], 1.83-4.49; P≤0.001), nonshockable rhythm (OR, 1.75; CI, 1.10-2.77; P=0.017), initial ejection fraction<30% (OR, 2.11; CI, 1.32-3.37; P=0.002), shock at presentation (OR, 2.27; CI, 1.42-3.62; P<0.001), and ischemic time >25 minutes (OR, 1.42; CI, 0.90-2.23; P=0.13). The derivation model area under the curve was 0.73, and Hosmer-Lemeshow test P=0.47. Outcomes were similar in the 318-patient validation cohort (area under the curve 0.68, Hosmer-Lemeshow test P=0.41). When assigned a point for each associated factor in the derivation model, the average predicted versus observed probability of CED with a CREST score (coronary artery disease, initial heart rhythm, low ejection fraction, shock at the time of admission, and ischemic time >25 minutes) of 0 to 5 was: 7.1% versus 10.2%, 9.5% versus 11%, 22.5% versus 19.6%, 32.4% versus 29.6%, 38.5% versus 30%, and 55.7% versus 50%.

Conclusions: The CREST model stratified patients immediately after resuscitation according to risk of a circulatory-etiology death. The tool may allow for estimation of circulatory risk and improve the triage of survivors of cardiac arrest without ST-segment-elevation myocardial infarction at the point of care.

Keywords: cardiomyopathies; cardiopulmonary resuscitation; forecasting; heart arrest; prognosis; shock.

PubMed Disclaimer

Comment in

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources