Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Oct 11:8:1737.
doi: 10.3389/fpls.2017.01737. eCollection 2017.

Post-silking Factor Consequences for N Efficiency Changes Over 38 Years of Commercial Maize Hybrids

Affiliations

Post-silking Factor Consequences for N Efficiency Changes Over 38 Years of Commercial Maize Hybrids

Keru Chen et al. Front Plant Sci. .

Abstract

Hybrid selection in maize (Zea mays L.) over the decades has increased post-silking dry matter (PostDM) and nitrogen (PostN) accumulation, often with an accompanying increase in one or more N use efficiency (NUE) metrics such as partial factor productivity (PFP), N conversion efficiency (NCE), and N internal efficiency (NIE). More certainty on the underlying mechanisms of how PostDM and PostN changes over time have contributed to NUE gains or losses in modern-era hybrids can only be realized by directly comparing hybrids of different eras in the context of production-system-relevant management systems. A two-year and two-location field study was conducted in Indiana with two N rates (55 and 220 kg N ha-1), three plant densities (54,000, 79,000, and 104,000 plants ha-1) and eight commercial hybrids that were released by a single seed company from 1967 to 2005. The main treatment effects of N rate, density, and hybrid dominated the PostDM and PostN responses, and there were no significant two-way or three-way interactions. Total dry matter at maturity gains averaged 80 kg ha-1 year-1 of hybrid release when averaged over locations, plant densities and N rates. Total N contents at maturity increased 0.68 kg ha-1 year-1, primarily due to annual increases in grain N content (0.8 kg ha-1 year-1). Post-silking N uptake rate increased 0.44 kg ha-1 year-1 for these era hybrids in more favorable production site-years. Slopes of grain N concentration increases per unit PostN gain were similar for all hybrids. Gains in average PFP over time were considerably higher at the low N rate (0.9 kg ha-1 year-1) than at the high N rate (0.3 kg kg-1 year-1). Hybrid gains in NIE were evident from 1967 to 1994, but not thereafter. The low N rate and higher plant densities also increased relative NIE and NCE values, but without hybrid interactions. There was no consistent trend of NIE or NCE gains in these hybrids primarily because grain and whole-plant N concentrations didn't decline over the decades at either N rate, and because NIE and NCE were often plant-density dependent.

Keywords: Partial factor productivity; Post-silking dry matter accumulation; maize hybrids; nitrogen internal efficiency; post-silking N accumulation.

PubMed Disclaimer

Figures

Figure 1
Figure 1
The weather conditions for the two sites in both 2013 and 2014, including maximum air temperature (°C, blue line), minimum air temperature (°C, red line), and accumulated precipitation (mm, green line). For each environment, maximum air temperature and minimum air temperature shared the primary y-axis (left) and accumulated precipitation used secondary y-axis (right). Date for actual 50% silking (R1) was marked for each environment by a dashed arrow. The amount of pre-silking and post-silking accumulated precipitation are also marked in each environment. (A), Represents ACRE, 2013; (B), Represents PPAC, 2013; (C), Represents ACRE, 2014; and (D), Represents PPAC, 2014.
Figure 2
Figure 2
The percentage of Log (NIE) variance explained by log (grain dry matter) and log (total N content at maturity) at 55 and 220N at ACRE (A) and PPAC (B); explained by log (HI) and log (plant N concentration) at maturity at 55 and 220N at ACRE (C) and PPAC (D); explained by log (NHI) and log (grain N concentration at maturity) at 55 and 220N at ACRE (E) and PPAC (F).
Figure 3
Figure 3
The auto-correlation of total N concentration and grain dry matter at R6 at both N rates at ACRE (A) and PPAC (B); plant N concentration and HI at both N rates at ACRE (C) and PPAC (D); grain N concentration and NHI at both rates at ACRE (E) and PPAC (F). The slope differences between low N and high N rates are: (A) 7***, (B) 0ns, (C) 2.4***, (D) 0.9***, (E) 1.7**, and (F) 0.6*. ***p-value < 0.001; **p-value < 0.01; *p-value < 0.05; ns, not significant (p-value > 0.05).
Figure 4
Figure 4
The correlation between grain N concentration (%) and post-silking N uptake (kg ha−1) for all eight hybrids when averaged across all treatments and locations. 1967: GNC = 0.9 + 0.006 × PostN, R2 = 0.84, p < 0.001; 1975: GNC = 0.8 + 0.006 × PostN, R2 = 0.67, p = 0.001; 1982: GNC = 0.8 + 0.006 × PostN, R2 = 0.81, p < 0.001; 1994: GNC = 0.8 + 0.005 × PostN, R2 = 0.85, p < 0.001; 2003RR2: GNC = 0.8 + 0.005 × PostN, R2 = 0.83, p < 0.001; 2003VT3: GNC = 0.8 + 0.005 × PostN, R2 = 0.84, p < 0.001; 2005RR2: GNC = 0.8 + 0.006 × PostN, R2 = 0.85, p < 0.001; 2005VT3: GNC = 0.8 + 0.006 × PostN, R2 = 0.93, p < 0.001.
Figure 5
Figure 5
Bilinear model fitted for grain N concentration (%) and total remobilized N (kg ha−1) for eight hybrids. Slopes for eight hybrids are (order from 1967 to 2005VT3): 0.010, 0.010, 0.010, 0.005, 0.018, 0.008, 0.010, and 0.012. The threshold (x0) for eight hybrids are (order from 1967 to 2005VT3): 70, 70, 67, 65, 62, 74, 72, and 71 kg ha−1. The plateau for eight hybrids are (order from 1967 to 2005VT3): 1.30, 1.15, 1.17, 1.02, 1.07, 1.09, 1.15 and 1.17. And the R2 for fitted models are (order from 1967 to 2005VT3): 0.34, 0.65, 0.68, 0.19, 0.49, 0.45, 0.50 and 0.49. P-value for all fitted model are less than 0.05.

Similar articles

Cited by

References

    1. Anderson E. L., Kamprath E. J., Moll R. H. (1985). Prolificacy and N fertilizer effects on yield and N utilization in maize. Crop Sci. 25, 598–602. 10.2135/cropsci1985.0011183X002500040005x - DOI
    1. Bänziger M., Betrán F. J., Lafitte H. R. (1997). Efficiency of high-nitrogen selection environments for improving maize for low-nitrogen target environments. Crop Sci. 37, 1103–1109. 10.2135/cropsci1997.0011183X003700040012x - DOI
    1. Bender R., Haegele J., Ruffo M., Below F. E. (2013). Nutrient uptake, partitioning, and remobilization in modern, transgenic insect-protected maize hybrids. Agron. J. 105, 162–170. 10.2134/agronj2012.0352 - DOI
    1. Cassman K. G., Dobermann A. R., Walters D. T. (2002). Agroecosystems, nitrogen-use efficiency, and nitrogen management. Ambio 31, 132–140. 10.1579/0044-7447-31.2.132 - DOI - PubMed
    1. Chen K., Camberato J. J., Vyn T. J. (2017). Maize grain yield and kernel component relationships to morphophysiological traits in commercial hybrids separated by four decades. Crop Sci. 57, 1641–1657. 10.2135/cropsci2016.06.0540 - DOI