The unique structural and functional features of CXCL12
- PMID: 29082918
- PMCID: PMC6052832
- DOI: 10.1038/cmi.2017.107
The unique structural and functional features of CXCL12
Abstract
The CXC chemokine CXCL12 is an important factor in physiological and pathological processes, including embryogenesis, hematopoiesis, angiogenesis and inflammation, because it activates and/or induces migration of hematopoietic progenitor and stem cells, endothelial cells and most leukocytes. Therefore, CXCL12 activity is tightly regulated at multiple levels. CXCL12 has the unique property of existing in six splice variants in humans, each having a specific tissue distribution and in vivo activity. Controlled splice variant transcription and mRNA stability determine the CXCL12 expression profile. CXCL12 fulfills its functions in homeostatic and pathological conditions by interacting with its receptors CXC chemokine receptor 4 (CXCR4) and atypical chemokine receptor 3 (ACKR3) and by binding to glycosaminoglycans (GAGs) in tissues and on the endothelium to allow a proper presentation to passing leukocytes. Homodimerizaton and heterodimerization of CXCL12 and its receptors can alter their signaling activity, as exemplified by the synergy between CXCL12 and other chemokines in leukocyte migration assays. Receptor binding may also initiate CXCL12 internalization and its subsequent removal from the environment. Furthermore, CXCL12 activity is regulated by posttranslational modifications. Proteolytic removal of NH2- or COOH-terminal amino acids, citrullination of arginine residues by peptidyl arginine deiminases or nitration of tyrosine residues reduce CXCL12 activity. This review summarizes the interactions of CXCL12 with the cellular environment and discusses the different levels of CXCL12 activity regulation.
Keywords: ACKR3; CXCL12; CXCR4; chemokine; regulation.
Conflict of interest statement
The authors declare no conflict of interest.
Figures



References
-
- Zlotnik A, Yoshie O. Chemokines: a new classification system and their role in immunity. Immunity. 2000;12:121–127. - PubMed
-
- Bachelerie F, Ben-Baruch A, Burkhardt AM, Combadiere C, Farber JM, Graham GJ, et al. International Union of Basic and Clinical Pharmacology. [corrected]. LXXXIX. Update on the extended family of chemokine receptors and introducing a new nomenclature for atypical chemokine receptors. Pharmacol Rev. 2014;66:1–79. - PMC - PubMed
-
- Nagasawa T, Hirota S, Tachibana K, Takakura N, Nishikawa S, Kitamura Y, et al. Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature. 1996;382:635–638. - PubMed
-
- Kim CH, Broxmeyer HE. In vitro behavior of hematopoietic progenitor cells under the influence of chemoattractants: stromal cell-derived factor-1, steel factor, and the bone marrow environment. Blood. 1998;91:100–110. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources