Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2017 Nov 22;117(22):13502-13565.
doi: 10.1021/acs.chemrev.7b00177. Epub 2017 Oct 30.

Theory and Simulation of the Ultrafast Double-Bond Isomerization of Biological Chromophores

Affiliations
Review

Theory and Simulation of the Ultrafast Double-Bond Isomerization of Biological Chromophores

Samer Gozem et al. Chem Rev. .

Abstract

Ultrafast processes in light-absorbing proteins have been implicated in the primary step in the light-to-energy conversion and the initialization of photoresponsive biological functions. Theory and computations have played an instrumental role in understanding the molecular mechanism of such processes, as they provide a molecular-level insight of structural and electronic changes at ultrafast time scales that often are very difficult or impossible to obtain from experiments alone. Among theoretical strategies, the application of hybrid quantum mechanics and molecular mechanics (QM/MM) models is an important approach that has reached an evident degree of maturity, resulting in several important contributions to the field. This review presents an overview of state-of-the-art computational studies on subnanosecond events in rhodopsins, photoactive yellow proteins, phytochromes, and some other photoresponsive proteins where photoinduced double-bond isomerization occurs. The review also discusses current limitations that need to be solved in future developments.

PubMed Disclaimer

LinkOut - more resources