Associations between apparent diffusion coefficient (ADC) and KI 67 in different tumors: a meta-analysis. Part 1: ADCmean
- PMID: 29088879
- PMCID: PMC5650434
- DOI: 10.18632/oncotarget.20406
Associations between apparent diffusion coefficient (ADC) and KI 67 in different tumors: a meta-analysis. Part 1: ADCmean
Abstract
Diffusion weighted imaging (DWI) is a magnetic resonance imaging (MRI) technique based on measure of water diffusion in tissues. This diffusion can be quantified by apparent diffusion coefficient (ADC). Some reports indicated that ADC can reflect tumor proliferation potential. The purpose of this meta-analysis was to provide evident data regarding associations between ADC and KI 67 in different tumors. Studies investigating the relationship between ADC and KI 67 in different tumors were identified. MEDLINE library was screened for associations between ADC and KI 67 in different tumors up to April 2017. Overall, 42 studies with 2026 patients were identified. The following data were extracted from the literature: authors, year of publication, number of patients, tumor type, and correlation coefficients. Associations between ADC and KI 67 were analyzed by Spearman's correlation coefficient. The reported Pearson correlation coefficients in some studies were converted into Spearman correlation coefficients. The pooled correlation coefficient between ADCmean and KI 67 for all included tumors was ρ = -0.44. Furthermore, correlation coefficient for every tumor entity was calculated. The calculated correlation coefficients were as follows: ovarian cancer: ρ = -0.62, urothelial carcinomas: ρ = -0.56, cerebral lymphoma: ρ = -0.55, neuroendocrine tumors: ρ = -0.52, glioma: ρ = -0.51, lung cancer: ρ = -0.50, prostatic cancer: ρ = -0.43, rectal cancer: ρ = -0.42, pituitary adenoma:ρ = -0.44, meningioma, ρ = -0.43, hepatocellular carcinoma: ρ = -0.37, breast cancer: ρ = -0.22.
Keywords: ADC; diffusion weighted imaging; ki 67.
Figures
References
-
- Surov A, Caysa H, Wienke A, Spielmann RP, Fiedler E. Correlation between different ADC fractions, cell count, Ki-67, total nucleic areas and average nucleic areas in meningothelial meningiomas. Anticancer Res. 2015;35:6841–6. - PubMed
-
- Sinkus R, Van Beers BE, Vilgrain V, DeSouza N, Waterton JC. Apparent diffusion coefficient from magnetic resonance imaging as a biomarker in oncology drug development. Eur J Cancer. 2012;48:425–31. - PubMed
-
- Hamstra DA, Rehemtulla A, Ross BD. Diffusion magnetic resonance imaging: a biomarker for treatment response in oncology. J Clin Oncol. 2007;25:4104–9. - PubMed
-
- Harry VN, Semple SI, Parkin DE, Gilbert FJ. Use of new imaging techniques to predict tumour response to therapy. Lancet Oncol. 2010;11:92–102. - PubMed
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous
