Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Feb;67(2):299-308.
doi: 10.2337/db17-0577. Epub 2017 Nov 2.

Engineering Glucose Responsiveness Into Insulin

Affiliations

Engineering Glucose Responsiveness Into Insulin

Niels C Kaarsholm et al. Diabetes. 2018 Feb.

Erratum in

  • Erratum. Engineering Glucose Responsiveness Into Insulin. Diabetes 2018;67:299-308.
    Kaarsholm NC, Lin S, Yan L, Kelly T, van Heek M, Mu J, Wu M, Dai G, Cui Y, Zhu Y, Carballo-Jane E, Reddy V, Zafian P, Huo P, Shi S, Antochshuk V, Ogawa A, Liu F, Souza SC, Seghezzi W, Duffy JL, Erion M, Nargund RP, Kelley DE. Kaarsholm NC, et al. Diabetes. 2018 May;67(5):1030. doi: 10.2337/db18-er05a. Epub 2018 Feb 27. Diabetes. 2018. PMID: 29487114 Free PMC article. No abstract available.

Abstract

Insulin has a narrow therapeutic index, reflected in a small margin between a dose that achieves good glycemic control and one that causes hypoglycemia. Once injected, the clearance of exogenous insulin is invariant regardless of blood glucose, aggravating the potential to cause hypoglycemia. We sought to create a "smart" insulin, one that can alter insulin clearance and hence insulin action in response to blood glucose, mitigating risk for hypoglycemia. The approach added saccharide units to insulin to create insulin analogs with affinity for both the insulin receptor (IR) and mannose receptor C-type 1 (MR), which functions to clear endogenous mannosylated proteins, a principle used to endow insulin analogs with glucose responsivity. Iteration of these efforts culminated in the discovery of MK-2640, and its in vitro and in vivo preclinical properties are detailed in this report. In glucose clamp experiments conducted in healthy dogs, as plasma glucose was lowered stepwise from 280 mg/dL to 80 mg/dL, progressively more MK-2640 was cleared via MR, reducing by ∼30% its availability for binding to the IR. In dose escalations studies in diabetic minipigs, a higher therapeutic index for MK-2640 (threefold) was observed versus regular insulin (1.3-fold).

PubMed Disclaimer

MeSH terms