Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Nov 3;13(11):e1007028.
doi: 10.1371/journal.pgen.1007028. eCollection 2017 Nov.

How convincing is a matching Y-chromosome profile?

Affiliations

How convincing is a matching Y-chromosome profile?

Mikkel M Andersen et al. PLoS Genet. .

Abstract

The introduction of forensic autosomal DNA profiles was controversial, but the problems were successfully addressed, and DNA profiling has gone on to revolutionise forensic science. Y-chromosome profiles are valuable when there is a mixture of male-source and female-source DNA, and interest centres on the identity of the male source(s) of the DNA. The problem of evaluating evidential weight is even more challenging for Y profiles than for autosomal profiles. Numerous approaches have been proposed, but they fail to deal adequately with the fact that men with matching Y-profiles are related in extended patrilineal clans, many of which may not be represented in available databases. The higher mutation rates of modern profiling kits have led to increased discriminatory power but they have also exacerbated the problem of fairly conveying evidential value. Because the relevant population is difficult to define, yet the number of matching relatives is fixed as population size varies, it is typically infeasible to derive population-based match probabilities relevant to a specific crime. We propose a conceptually simple solution, based on a simulation model and software to approximate the distribution of the number of males with a matching Y profile. We show that this distribution is robust to different values for the variance in reproductive success and the population growth rate. We also use importance sampling reweighting to derive the distribution of the number of matching males conditional on a database frequency, finding that this conditioning typically has only a modest impact. We illustrate the use of our approach to quantify the value of Y profile evidence for a court in a way that is both scientifically valid and easily comprehensible by a judge or juror.

PubMed Disclaimer

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Fig 1
Fig 1. Posterior distributions of the mutation rates.
The posterior distributions of the whole-profile per-generation mutation rates for each of three profiling kits: Yfiler, PowerPlex Y23, and Yfiler Plus (see Materials and Methods). Vertical dashed lines indicate maximum-likelihood estimates. See S1 Table for details of the underlying mutation count data.
Fig 2
Fig 2. Simulation process illustrated.
Simplified illustration of the process of counting haplotype matches (here, 3-locus haplotypes simulated over 10 generations with mutation rate 0.1 per locus per generation). Below the dashed line circles indicate males in the final three generations, who we label “live”. A live male Q was sampled and observed to have haplotype (0, 0, −1). The figure shows the founder that is ancestral to Q and all descendants of that founder, highlighting in orange those with haplotype (0, 0, −1). In this instance there are 16 live males with haplotype (0, 0, −1); any of these 16 could be Q—the resulting figure would be the same.
Fig 3
Fig 3. Properties of random databases from simulated populations.
Properties of PowerPlex Y23 profile databases drawn at random from simulated populations with VRS = 0.2 and constant population sizes N = 105 (green boxplots) and N = 106 (red boxplots), and real databases of the same sizes (crosses) [20]. The left panels show the fractions of singleton profiles and doubletons (profiles arising exactly twice). The right panels show the counts of the two most common profiles.
Fig 4
Fig 4. The distribution of |Ω|, the number of live males with Y profile matching that of Q.
The distribution is shown for each of three profiling kits, three values of the variance in reproductive success (VRS) and with and without population growth (growth rates 1 and 1.02). See Table 1 for numerical properties of these distributions.
Fig 5
Fig 5. The distribution of Δ, the number of father-son steps between Q and another male in Ω.
The distribution is shown for each of three profiling kits, three values of VRS and with and without population growth. See S2 Table for numerical properties of these distributions.

References

    1. Butler J, Decker A, Kline M, Vallone P. Chromosomal duplications along the Y chromosome and their potential impact on Y-STR interpretation. J Forensic Sci. 2005;50(4):853–9. doi: 10.1520/JFS2004481 - DOI - PubMed
    1. de Knijff P. Son, Give Up Your Gun: Presenting Y-STR Results in Court. Profiles in DNA. 2003;6(2):3–5.
    1. Steele CD, Balding D. Weight of evidence for forensic DNA profiles. 2nd ed Wiley; 2015.
    1. Caliebe A, Jochens A, Willuweit S, Roewer L, Krawczak M. No shortcut solution to the problem of Y-STR match probability calculation. Forensic Science International: Genetics. 2015;15:69–75. doi: 10.1016/j.fsigen.2014.10.016 - DOI - PubMed
    1. Brenner C. Understanding Y haplotype matching probability. Forensic Science International: Genetics. 2014;8:233–43. doi: 10.1016/j.fsigen.2013.10.007 - DOI - PubMed