Establishment and characterization of patient-derived xenograft models of gastrointestinal stromal tumor resistant to standard tyrosine kinase inhibitors
- PMID: 29100343
- PMCID: PMC5652737
- DOI: 10.18632/oncotarget.20816
Establishment and characterization of patient-derived xenograft models of gastrointestinal stromal tumor resistant to standard tyrosine kinase inhibitors
Abstract
Gastrointestinal stromal tumors (GISTs) with KIT or platelet-derived growth factor receptor alpha (PDGFRa) oncogenic driver gene mutations, respond to tyrosine kinase inhibitors (TKIs) including imatinib, sunitinib, and regorafenib. However, most patients develop TKI resistance; therefore, novel agents are required. We established three TKI-resistant GIST patient-derived xenograft (PDX) models for effective drug development. These were PDX models harboring primary and secondary KIT and additional mutations; KIT exon 11 (p.Y570_L576del), KIT exon 17 (p.D816E), and PTEN (p.T321fs) mutations in GIST-RX1 from a patient who was unresponsive to imatinib, sunitinib, and sorafenib, and KIT exon 11 (p.K550_splice) and KIT exon 14 (p.T670I) mutations in GIST-RX2 and KIT exon 9 (p.502_503insYA) and KIT exon 17 (p.D820E) mutations in GIST-RX4 from patients with imatinib and imatinib/sunitinib resistance, respectively. The histological features and mutation statuses of GIST PDXs were consistent with those of the original patient tumors, and the models showed TKI sensitivity comparable to clinical responses. Imatinib inhibited the KIT pathway in imatinib-sensitive GIST-T1 but not GIST-RX1, RX2, and RX4. These GIST PDX models will be useful for studying TKI resistance mechanisms and evaluating novel targeted agents in GIST.
Keywords: KIT mutation; gastrointestinal stromal tumor; patient-derived xenograft; receptor tyrosine kinase inhibitors; resistance.
Conflict of interest statement
CONFLICTS OF INTEREST None declared.
Figures




References
-
- Joensuu H, Fletcher C, Dimitrijevic S, Silberman S, Roberts P, Demetri G. Management of malignant gastrointestinal stromal tumours. Lancet Oncol. 2002;3:655–664. - PubMed
-
- Hirota S, Isozaki K, Moriyama Y, Hashimoto K, Nishida T, Ishiguro S, Kawano K, Hanada M, Kurata A, Takeda M, Muhammad Tunio G, Matsuzawa Y, Kanakura Y, et al. Gain-of-function mutations of c-kit in human gastrointestinal stromal tumors. Science. 1998;279:577–580. - PubMed
-
- Heinrich MC, Corless CL, Duensing A, McGreevey L, Chen CJ, Joseph N, Singer S, Griffith DJ, Haley A, Town A, Demetri GD, Fletcher CD, Fletcher JA. PDGFRA activating mutations in gastrointestinal stromal tumors. Science. 2003;299:708–710. - PubMed
-
- Lim KH, Huang MJ, Chen LT, Wang TE, Liu CL, Chang CS, Liu MC, Hsieh RK, Tzen CY. Molecular analysis of secondary kinase mutations in imatinib-resistant gastrointestinal stromal tumors. Med Oncol. 2008;25:207–213. - PubMed
-
- Wang WL, Conley A, Reynoso D, Nolden L, Lazar AJ, George S, Trent JC. Mechanisms of resistance to imatinib and sunitinib in gastrointestinal stromal tumor. Cancer Chemother Pharmacol. 2011;67:S15–24. - PubMed
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
Miscellaneous