Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Nov 3;17(1):188.
doi: 10.1186/s12887-017-0940-7.

Trends in diagnostic approaches for pediatric appendicitis: nationwide population-based study

Affiliations

Trends in diagnostic approaches for pediatric appendicitis: nationwide population-based study

Chih-Cheng Luo et al. BMC Pediatr. .

Abstract

Background: To define the benefits of different methods for diagnosis of pediatric appendicitis in Taiwan, a nationwide cohort study was used for analysis.

Methods: We identified 44,529 patients under 18 years old who had been hospitalized with a diagnosis of acute appendicitis between 2003 and 2012. We analyzed the percentages of cases in which ultrasound (US) and/or computed tomography (CT) were performed and non-perforated and perforated appendicitis were diagnosed for each year. Multivariate logistic regression analyses were performed to evaluate risk factors for perforated appendicitis.

Results: There were more cases of non-perforated appendicitis (N = 32,491) than perforated appendicitis (N = 12,038). The rate of non-perforated cases decreased from 0.068% in 2003 to 0.049% in 2012; perforated cases remained relatively stable at 0.024%~0.023% from 2003 to 2012. The percentage of CT evaluation increased from 3% in 2003 to 20% in 2012; the rates of US or both US and CT evaluations were similar annually. The percentage of neither CT nor US evaluation gradually decreased from 97% in 2003, to 79% in 2012. The odds ratios of a perforated appendix for those patients diagnosed by US, CT, or both US and CT were 1.227 (95% confidence interval (CI) 0.91, 1.65; p = 0.173), 2.744 (95% CI 2.55, 2.95; p < 0.001), and 5.062 (95% CI = 3.14, 8.17; p < 0.001), respectively, compared to patients who did not receive US or CT. The odd ratios of a perforated appendix for those patients 7-12 and ≤6 years old were 1.756 (95% CI 1.67, 1.84; p < 0.001) and 3.094 (95% CI 2.87, 3.34; p < 0.001), respectively, compared to those 13-18 years old.

Conclusions: Our study demonstrated that using CT scan as a diagnostic tool for acute appendicitis increased annually; most patients especially those ≤6 years old who received CT evaluation had a greater risk of having perforated appendicitis. We recommend a prompt appendectomy in those pediatric patients with typical clinical symptoms and physical findings for non-complicated appendicitis to avoid the risk of appendiceal perforation.

Keywords: Appendicitis; Computed tomography; National Health Insurance Database; Ultrasound.

PubMed Disclaimer

Conflict of interest statement

Ethics approval and consent to participate

The NHI database used in this study consists of anonymous secondary data released to the public for research purposes. This study did not contain confidential patient data. Taipei Medical University-Joint Institutional Review Board approved this study (No: 201,404,074). The patient’s consent to participate is not applicable in this study.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Percentages of patients with non-perforated vs. perforated appendixes from 2003 to 2012
Fig. 2
Fig. 2
Percentages of patients who received ultrasound (US) and computed tomography (CT)

Similar articles

Cited by

References

    1. Gamal R, Moore TC. Appendicitis in children aged 13 years and younger. Am J Surg. 1990;159:589–592. doi: 10.1016/S0002-9610(06)80073-5. - DOI - PubMed
    1. Rodriguez DP, Vargas S, Callahan MJ, Zurakowski D, Taylor GA. Appendicits in young children: imagine experience and clinical outcomes. AJR. 2006;186:1158–1164. doi: 10.2214/AJR.05.0055. - DOI - PubMed
    1. Rao PM, Rhea JT, Novelline RA, Mustafavi AA, McCabe CJ. Effect of computed tomography of the appendix on treatment of patients and use of hospital resources. N Engl J Med. 1998;338:141–146. doi: 10.1056/NEJM199801153380301. - DOI - PubMed
    1. Balthazar EJ, Rofsky NM, Zucker R. Appendicitis: the impact of computed tomography imaging in negative appendectomy and perforation rates. Am J Gastroenterol. 1998;93:768–771. doi: 10.1111/j.1572-0241.1998.222_a.x. - DOI - PubMed
    1. Garcia Peña BM, Mandl KD, Kraus SJ, Fischer AC, Fleisher GR, Lund DP, Taylor GA. Ultrasonography and limited computed tomography in the diagnosis and Management of Appendicitis in children. JAMA. 1999;282:1041–1046. doi: 10.1001/jama.282.11.1041. - DOI - PubMed

MeSH terms