The Biology of Bone Metastasis
- PMID: 29101110
- PMCID: PMC5980796
- DOI: 10.1101/cshperspect.a031252
The Biology of Bone Metastasis
Abstract
Bone metastasis, or the development of secondary tumors within the bone of cancer patients, is a debilitating and incurable disease. Despite its morbidity, the biology of bone metastasis represents one of the most complex and intriguing of all oncogenic processes. This complexity derives from the intricately organized bone microenvironment in which the various stages of hematopoiesis, osteogenesis, and osteolysis are jointly regulated but spatially restricted. Disseminated tumor cells (DTCs) from various common malignancies such as breast, prostate, lung, and kidney cancers or myeloma are uniquely primed to subvert these endogenous bone stromal elements to grow into pathological osteolytic or osteoblastic lesions. This colonization process can be separated into three key steps: seeding, dormancy, and outgrowth. Targeting the processes of dormancy and initial outgrowth offers the most therapeutic promise. Here, we discuss the concepts of the bone metastasis niche, from controlling tumor-cell survival to growth into clinically detectable disease.
Copyright © 2018 Cold Spring Harbor Laboratory Press; all rights reserved.
Figures
References
-
- Adams GB, Martin RP, Alley IR, Chabner KT, Cohen KS, Calvi LM, Kronenberg HM, Scadden DT. 2007. Therapeutic targeting of a stem cell niche. Nat Biotechnol 25: 238–243. - PubMed
-
- Akech J, Wixted JJ, Bedard K, van der Deen M, Hussain S, Guise TA, van Wijnen AJ, Stein JL, Languino LR, Altieri DC, et al. 2010. Runx2 association with progression of prostate cancer in patients: Mechanisms mediating bone osteolysis and osteoblastic metastatic lesions. Oncogene 29: 811–821. - PMC - PubMed
-
- Anderson DM, Maraskovsky E, Billingsley WL, Dougall WC, Tometsko ME, Roux ER, Teepe MC, DuBose RF, Cosman D, Galibert L. 1997. A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature 390: 175–179. - PubMed
-
- Arai F, Hirao A, Ohmura M, Sato H, Matsuoka S, Takubo K, Ito K, Koh GY, Suda T. 2004. Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell 118: 149–161. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical