Transport of tricarboxylic acid cycle intermediates by membrane vesicles from renal brush border
- PMID: 291013
- PMCID: PMC383832
- DOI: 10.1073/pnas.76.7.3397
Transport of tricarboxylic acid cycle intermediates by membrane vesicles from renal brush border
Abstract
The uptake of citrate and alpha-ketoglutarate by membrane vesicles from rabbit renal brush border was studied by a rapid filtration technique. Both compounds exhibited transport characteristics similar to those seen for the sodium-dependent cotransport systems previously described for sugars and amino acids in brush border membranes. The estimated sodium-dependent Vmax and Km were 17 nmol per mg of protein per min and 0.18 mM for citrate and 17 nmol per mg of protein per min and 1.0 mM for alpha-ketoglutarate. The initial rate of citrate transport was 5 times that of sugars and amino acids under comparable conditions. Uptake rates of 0.1 mM citrate and alpha-ketoglutarate were inhibited by greater than 90% by 10 mM succinate, malate, fumarate, or oxaloacetate, indicating the presence in the brush border membrane of a transport system highly specialized for the renal conservation of intermediates of the tricarboxylic acid cycle.
Similar articles
-
Specificity of the transport system for tricarboxylic acid cycle intermediates in renal brush borders.J Membr Biol. 1980 Nov 15;57(1):73-82. doi: 10.1007/BF01868987. J Membr Biol. 1980. PMID: 7452725
-
Effects of metabolic intermediates on sugar and amino acid uptake in rabbit renal tubules and brush border membranes.J Physiol. 1980 Jul;304:373-87. doi: 10.1113/jphysiol.1980.sp013329. J Physiol. 1980. PMID: 7441540 Free PMC article.
-
Na+-dependent transport of tricarboxylic acid cycle intermediates by renal brush border membranes. Effects on fluorescence of a potential-sensitive cyanine dye.Biochim Biophys Acta. 1981 Feb 6;640(3):767-78. doi: 10.1016/0005-2736(81)90107-3. Biochim Biophys Acta. 1981. PMID: 7213704
-
Structural identification of brush border membrane transport systems--towards an understanding of regulatory mechanisms.Clin Investig. 1993 Oct;71(10):852-4. doi: 10.1007/BF00190336. Clin Investig. 1993. PMID: 8305847 Review.
-
Renal handling of magnesium in fish: from whole animal to brush border membrane vesicles.Front Biosci. 2000 Aug 1;5:D712-9. doi: 10.2741/beyenbach. Front Biosci. 2000. PMID: 10922293 Review.
Cited by
-
Functional characterization and immunolocalization of the transporter encoded by the life-extending gene Indy.Proc Natl Acad Sci U S A. 2002 Oct 29;99(22):14315-9. doi: 10.1073/pnas.222531899. Epub 2002 Oct 21. Proc Natl Acad Sci U S A. 2002. PMID: 12391301 Free PMC article.
-
Expression of sodium-dependent dicarboxylate transporter 1 (NaDC1/SLC13A2) in normal and neoplastic human kidney.Am J Physiol Renal Physiol. 2017 Mar 1;312(3):F427-F435. doi: 10.1152/ajprenal.00559.2016. Epub 2016 Dec 7. Am J Physiol Renal Physiol. 2017. PMID: 27927654 Free PMC article.
-
The use of isolated membrane vesicles to study epithelial transport processes.J Membr Biol. 1980 Jul 15;55(2):81-95. doi: 10.1007/BF01871151. J Membr Biol. 1980. PMID: 6997489 Review.
-
A familial progressive neurodegenerative disease with 2-oxoglutaric aciduria.Eur J Pediatr. 1982 Feb;138(1):32-7. doi: 10.1007/BF00442325. Eur J Pediatr. 1982. PMID: 7075624
-
The use of potential-sensitive cyanine dye for studying ion-dependent electrogenic renal transport of organic solutes. Spectrophotometric measurements.Biochem J. 1982 Nov 15;208(2):359-68. doi: 10.1042/bj2080359. Biochem J. 1982. PMID: 7159404 Free PMC article.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources