SAM-VI RNAs selectively bind S-adenosylmethionine and exhibit similarities to SAM-III riboswitches
- PMID: 29106323
- PMCID: PMC5927728
- DOI: 10.1080/15476286.2017.1399232
SAM-VI RNAs selectively bind S-adenosylmethionine and exhibit similarities to SAM-III riboswitches
Abstract
Five distinct riboswitch classes that regulate gene expression in response to the cofactor S-adenosylmethionine (SAM) or its metabolic breakdown product S-adenosylhomocysteine (SAH) have been reported previously. Collectively, these SAM- or SAH-sensing RNAs constitute the most abundant collection of riboswitches, and are found in nearly every major bacterial lineage. Here, we report a potential sixth member of this pervasive riboswitch family, called SAM-VI, which is predominantly found in Bifidobacterium species. SAM-VI aptamers selectively bind the cofactor SAM and strongly discriminate against SAH. The consensus sequence and structural model for SAM-VI share some features with the consensus model for the SAM-III riboswitch class, whose members are mainly found in lactic acid bacteria. However, there are sufficient differences between the two classes such that current bioinformatics methods separately cluster representatives of the two motifs. These findings highlight the abundance of RNA structures that can form to selectively recognize SAM, and showcase the ability of RNA to utilize diverse strategies to perform similar biological functions.
Keywords: SAM; aptamer; cofactor; gene regulation; metA; metK; noncoding RNA.
Figures




Similar articles
-
Riboswitches that sense S-adenosylmethionine and S-adenosylhomocysteine.Biochem Cell Biol. 2008 Apr;86(2):157-68. doi: 10.1139/O08-008. Biochem Cell Biol. 2008. PMID: 18443629 Review.
-
The aptamer core of SAM-IV riboswitches mimics the ligand-binding site of SAM-I riboswitches.RNA. 2008 May;14(5):822-8. doi: 10.1261/rna.988608. Epub 2008 Mar 27. RNA. 2008. PMID: 18369181 Free PMC article.
-
Evidence for a second class of S-adenosylmethionine riboswitches and other regulatory RNA motifs in alpha-proteobacteria.Genome Biol. 2005;6(8):R70. doi: 10.1186/gb-2005-6-8-r70. Epub 2005 Aug 1. Genome Biol. 2005. PMID: 16086852 Free PMC article.
-
NMR resonance assignments for the SAM/SAH-binding riboswitch RNA bound to S-adenosylhomocysteine.Biomol NMR Assign. 2018 Oct;12(2):329-334. doi: 10.1007/s12104-018-9834-3. Epub 2018 Jul 26. Biomol NMR Assign. 2018. PMID: 30051308
-
Structure-based insights into recognition and regulation of SAM-sensing riboswitches.Sci China Life Sci. 2023 Jan;66(1):31-50. doi: 10.1007/s11427-022-2188-7. Epub 2022 Nov 29. Sci China Life Sci. 2023. PMID: 36459353 Review.
Cited by
-
A bacterial riboswitch class for the thiamin precursor HMP-PP employs a terminator-embedded aptamer.Elife. 2019 Apr 5;8:e45210. doi: 10.7554/eLife.45210. Elife. 2019. PMID: 30950790 Free PMC article.
-
Interactions between SAM and the 5' UTR mRNA of the sam1 gene regulate translation in S. pombe.RNA. 2020 Feb;26(2):150-161. doi: 10.1261/rna.072983.119. Epub 2019 Nov 25. RNA. 2020. PMID: 31767786 Free PMC article.
-
Biochemical validation of a second class of tetrahydrofolate riboswitches in bacteria.RNA. 2019 Sep;25(9):1091-1097. doi: 10.1261/rna.071829.119. Epub 2019 Jun 11. RNA. 2019. PMID: 31186369 Free PMC article.
-
Imaginary Ribozymes.ACS Chem Biol. 2020 Aug 21;15(8):2020-2030. doi: 10.1021/acschembio.0c00214. Epub 2020 Aug 3. ACS Chem Biol. 2020. PMID: 32687319 Free PMC article.
-
A spermidine riboswitch class in bacteria exploits a close variant of an aptamer for the enzyme cofactor S-adenosylmethionine.Cell Rep. 2023 Dec 26;42(12):113571. doi: 10.1016/j.celrep.2023.113571. Epub 2023 Dec 12. Cell Rep. 2023. PMID: 38096053 Free PMC article.
References
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources