Detection of tumor-derived DNA dispersed in the airway improves the diagnostic accuracy of bronchoscopy for lung cancer
- PMID: 29108319
- PMCID: PMC5668052
- DOI: 10.18632/oncotarget.18159
Detection of tumor-derived DNA dispersed in the airway improves the diagnostic accuracy of bronchoscopy for lung cancer
Abstract
The diagnostic accuracy of bronchoscopy for detecting lung cancer, especially peripheral lung cancer with lesions outside the endoscopically visible range, remains unsatisfactory. The aim of this study was to perform next-generation sequencing on bronchoscopic specimens to determine whether this improves the accuracy of bronchoscopy for diagnosing lung cancer and to identify factors influencing sensitivity. The bronchoscopic sensitivity for diagnosing lung cancer was initially evaluated in 191 patients who underwent lobectomy after bronchoscopy at our hospital. Sputum, bronchial wash fluid, and resected lung cancer specimens were subsequently collected from 18 patients with peripheral small cell lung cancer for genomic analysis. DNA was extracted from formalin-fixed, paraffin-embedded surgical tissue specimens and the supernatant and cell fractions of sputum and bronchial wash fluid. Deep sequencing was performed using a lung cancer panel covering all exons of 53 lung cancer-related genes. The bronchoscopic sensitivity for diagnosing lung cancer at our hospital was 60.7%. Multivariate analysis revealed that this was influenced by tumor size and location, but not histological type or lymph node metastasis. The sensitivity was the highest for biopsy followed by curettage and bronchial wash specimens. DNA mutations homologous to those identified in the primary lesions were detected in the bronchial wash fluid of 10 patients (55.6%), while only 2 patients (11.1%) were diagnosed with lung cancer based on conventional cytological examinations. In conclusion, the addition of genomic analysis to routine pathological examinations improves the diagnostic accuracy of bronchoscopy.
Keywords: bronchial wash; bronchoscopy; lung cancer; mutation; next-generation sequencing.
Conflict of interest statement
CONFLICTS OF INTEREST The authors declare that there are no conflicts of interest.
Figures



References
-
- Board RE, Wardley AM, Dixon JM, Armstrong AC, Howell S, Renshaw L, Donald E, Greystoke A, Ranson M, Hughes A, Dive C. Detection of PIK3CA mutations in circulating free DNA in patients with breast cancer. Breast Cancer Res Treat. 2010;120:461–467. - PubMed
-
- Schwarzenbach H, Hoon DS, Pantel K. Cell-free nucleic acids as biomarkers in cancer patients. Nat Rev Cancer. 2011;11:426–437. - PubMed
LinkOut - more resources
Full Text Sources
Other Literature Sources