Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1989 Feb;37(2):135-8.
doi: 10.1177/37.2.2911003.

Rapid localization of carbon 14-labeled molecules in biological samples by ion mass microscopy

Affiliations

Rapid localization of carbon 14-labeled molecules in biological samples by ion mass microscopy

E Hindie et al. J Histochem Cytochem. 1989 Feb.

Abstract

We report here on the ability of secondary ion mass spectrometry (SIMS) to provide rapid imaging of the intracellular distribution of 14C-labeled molecules. The validity of this method, using mass discrimination of carbon 14 atoms, was assessed by imaging the distribution of two molecules of well-known metabolism, [14C]-thymidine and [14C]-uridine, incorporated by human fibroblasts in culture. As expected, 14C ion images showed the presence of [14C]-thymidine in the nucleus of dividing cells, whereas [14C]-uridine was present in the cytoplasm as well as the nucleus of all cells, with a large concentration in the nucleoli. The time required to obtain the distribution images with the SMI 300 microscope was less than 6 min, whereas microautoradiography, the classical method for mapping the tissue distribution of 14C-labeled molecules, usually requires exposure times of several months. Secondary ion mass spectrometry using in situ mass discrimination is proposed here as a very sensitive method which permits rapid imaging of the subcellular distribution of molecules labeled with carbon 14.

PubMed Disclaimer

Substances

LinkOut - more resources