Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Nov 6;10(1):548.
doi: 10.1186/s13071-017-2489-6.

Quantifying the intensity of permethrin insecticide resistance in Anopheles mosquitoes in western Kenya

Affiliations

Quantifying the intensity of permethrin insecticide resistance in Anopheles mosquitoes in western Kenya

Seline Omondi et al. Parasit Vectors. .

Abstract

Background: The development and spread of resistance among local vectors to the major classes of insecticides used in Long-Lasting Insecticidal Nets (LLINs) and Indoor Residual Spraying (IRS) poses a major challenge to malaria vector control programs worldwide. The main methods of evaluating insecticide resistance in malaria vectors are the WHO tube bioassay and CDC bottle assays, with their weakness being determination of resistance at a fixed dose for variable populations. The CDC bottle assay using different insecticide dosages has proved applicable in ascertaining the intensity of resistance.

Methods: We determined the status and intensity of permethrin resistance and investigated the efficacy of commonly used LLINs (PermaNet® 2.0, PermaNet® 3.0 and Olyset®) against 3-5 day-old adult female Anopheles mosquitoes from four sub-counties; Teso, Bondo, Rachuonyo and Nyando in western Kenya. Knockdown was assessed to 4 doses of permethrin; 1× (21.5 μg/ml), 2× (43 μg/ml), 5× (107.5 μg/ml) and 10× (215 μg/ml) using CDC bottle assays.

Results: Mortality for 0.75% permethrin ranged from 23.5% to 96.1% in the WHO tube assay. Intensity of permethrin resistance was highest in Barkanyango Bondo, with 84% knockdown at the 30 min diagnostic time when exposed to the 10× dose. When exposed to the LLINs, mortality ranged between- 0-39% for Olyset®, 12-88% for PermaNet® 2.0 and 26-89% for PermaNet® 3.0. The efficacy of nets was reduced in Bondo and Teso. Results from this study show that there was confirmed resistance in all the sites; however, intensity assays were able to differentiate Bondo and Teso as the sites with the highest levels of resistance, which coincidentally were the two sub-counties with reduced net efficacy.

Conclusions: There was a reduced efficacy of nets in areas with high resistance portraying that at certain intensities of resistance, vector control using LLINs may be compromised. It is necessary to incorporate intensity assays in order to determine the extent of threat that resistance poses to malaria control.

Keywords: Anopheles gambiae; Insecticide resistance; Intensity; Permethrin.

PubMed Disclaimer

Conflict of interest statement

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
KDT50 values at 95% CI for female Anopheles mosquitoes exposed to 1×, 2×, 5× and 10× permethrin concentrations in the CDC bottle bioassay. KDT50 represents the time required for 50% of mosquitoes exposed to the insecticide to be knocked-down
Fig. 2
Fig. 2
Proportion mortality for PermaNet® 3.0 top and side panels against field collected An. gambiae (s.l.)
Fig. 3
Fig. 3
Map of Kenya showing the distribution of Anopheles gambiae (s.s.) and An. arabiensis in the four sub-counties

References

    1. WHO . World malaria report. Geneva: World Health Organization; 2016.
    1. WHO. WHO Global Malaria. Programme. World Malaria Report. Geneva: World Health Organization; 2015.
    1. Bhatt S, Weiss D, Cameron E, Bisanzio D, Mappin B, Dalrymple U, et al. The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature. 2015;526:207–211. doi: 10.1038/nature15535. - DOI - PMC - PubMed
    1. Sangba MLO, Deketramete T, Wango SP, Kazanji M, Akogbeto M, Ndiath MO. Insecticide resistance status of the Anopheles funestus population in Central African Republic: a challenge in the war. Parasit Vectors. 2016;9:230. doi: 10.1186/s13071-016-1510-9. - DOI - PMC - PubMed
    1. Sande S, Zimba M, Chinwada P, Masendu HT, Mazando S, Makuwaza A. The emergence of insecticide resistance in the major malaria vector Anopheles funestus (Diptera: Culicidae) from sentinel sites in Mutare and Mutasa districts. Zimbabwe Malar J. 2015;14:466. doi: 10.1186/s12936-015-0993-8. - DOI - PMC - PubMed

LinkOut - more resources