Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1989 Jan;190(1):54-62.
doi: 10.3181/00379727-190-42829.

Lysozyme-induced inhibition of the lymphocyte response to mitogenic lectins

Affiliations

Lysozyme-induced inhibition of the lymphocyte response to mitogenic lectins

P E Varaldo et al. Proc Soc Exp Biol Med. 1989 Jan.

Abstract

Both human lysozyme (HL) and hen egg white lysozyme (HEWL) inhibited the proliferative response of peripheral blood lymphocytes to T cell mitogens such as the lectins phytohemagglutinin and concanavalin A. This inhibition was observed both when HL or HEWL was added to the lymphocyte cultures in combination with phytohemagglutinin or concanavalin A and when lymphocytes were pretreated with either lysozyme and extensively washed prior to culture with mitogens. Under both conditions, the effects were strictly dose dependent; the lysozyme concentrations yielding maximal inhibitory effect were 5 micrograms/ml for HL and 1 microgram/ml for HEWL, while both lower and higher concentrations were less effective. Specific antilysozyme rabbit sera completely prevented the inhibitory effects of both HL and HEWL on the proliferative response of lymphocytes to phytohemagglutin or concanavalin A. Chitotriose (a lysozyme inhibitor) caused a strong reduction in the inhibitory effects of the two lysozymes on the lymphocyte response to either lectin. HL and HEWL also were found to markedly inhibit the polyclonal B cell proliferation and differentiation induced by pokeweed mitogen and T cells. A less marked inhibition was also obtained when T cells, but not B cells, were pretreated with HL or HEWL. Again, as in the experiments with T cell mitogens, the effects were dose dependent and 5 micrograms/ml HL and 1 microgram/ml HEWL proved to be the most effective concentrations. The possible mechanisms by which lysozyme inhibits the lymphocyte response to mitogenic lectins are considered and discussed. The enzymatic activity seemed to perform an essential function, as shown by the loss of effect when the heat- or trypsin-inactivated lysozymes were used and by the fact that only the enzymatically active compound, among certain semisynthetic derivatives of HEWL, inhibited the lymphocyte response to the mitogens. However, the cationic properties of the lysozyme molecule appeared to be essential too, since enzymes with a similar specificity of action showed effects similar to those observed with HL or HEWL only when they carried a strong positive charge. It is suggested that lysozyme, which is naturally secreted by monocytes and macrophages, might interact with lymphocyte surface receptor sites and participate in the complex mononuclear phagocyte-lymphocyte interactions and in the modulation of lymphocyte activation.

PubMed Disclaimer

Publication types

LinkOut - more resources