Chromatin-state discovery and genome annotation with ChromHMM
- PMID: 29120462
- PMCID: PMC5945550
- DOI: 10.1038/nprot.2017.124
Chromatin-state discovery and genome annotation with ChromHMM
Abstract
Noncoding DNA regions have central roles in human biology, evolution, and disease. ChromHMM helps to annotate the noncoding genome using epigenomic information across one or multiple cell types. It combines multiple genome-wide epigenomic maps, and uses combinatorial and spatial mark patterns to infer a complete annotation for each cell type. ChromHMM learns chromatin-state signatures using a multivariate hidden Markov model (HMM) that explicitly models the combinatorial presence or absence of each mark. ChromHMM uses these signatures to generate a genome-wide annotation for each cell type by calculating the most probable state for each genomic segment. ChromHMM provides an automated enrichment analysis of the resulting annotations to facilitate the functional interpretations of each chromatin state. ChromHMM is distinguished by its modeling emphasis on combinations of marks, its tight integration with downstream functional enrichment analyses, its speed, and its ease of use. Chromatin states are learned, annotations are produced, and enrichments are computed within 1 d.
Conflict of interest statement
The authors declare that they have no competing financial interests.
Figures



Similar articles
-
Universal annotation of the human genome through integration of over a thousand epigenomic datasets.Genome Biol. 2022 Jan 6;23(1):9. doi: 10.1186/s13059-021-02572-z. Genome Biol. 2022. PMID: 34991667 Free PMC article.
-
Learning chromatin states with factorized information criteria.Bioinformatics. 2015 Aug 1;31(15):2426-33. doi: 10.1093/bioinformatics/btv163. Epub 2015 Mar 24. Bioinformatics. 2015. PMID: 25810430
-
Spectacle: fast chromatin state annotation using spectral learning.Genome Biol. 2015 Feb 12;16(1):33. doi: 10.1186/s13059-015-0598-0. Genome Biol. 2015. PMID: 25786205 Free PMC article.
-
Computational schemes for the prediction and annotation of enhancers from epigenomic assays.Methods. 2015 Jan 15;72:86-94. doi: 10.1016/j.ymeth.2014.10.008. Epub 2014 Oct 15. Methods. 2015. PMID: 25461775 Free PMC article. Review.
-
Computational methods to explore chromatin state dynamics.Brief Bioinform. 2022 Nov 19;23(6):bbac439. doi: 10.1093/bib/bbac439. Brief Bioinform. 2022. PMID: 36208178 Free PMC article. Review.
Cited by
-
p53motifDB: integration of genomic information and tumor suppressor p53 binding motifs.bioRxiv [Preprint]. 2024 Sep 25:2024.09.24.614594. doi: 10.1101/2024.09.24.614594. bioRxiv. 2024. PMID: 39386591 Free PMC article. Preprint.
-
Retrotransposons spread potential cis-regulatory elements during mammary gland evolution.Nucleic Acids Res. 2019 Dec 16;47(22):11551-11562. doi: 10.1093/nar/gkz1003. Nucleic Acids Res. 2019. PMID: 31642473 Free PMC article.
-
Quantitative Multiplexed ChIP Reveals Global Alterations that Shape Promoter Bivalency in Ground State Embryonic Stem Cells.Cell Rep. 2019 Sep 17;28(12):3274-3284.e5. doi: 10.1016/j.celrep.2019.08.046. Cell Rep. 2019. PMID: 31533047 Free PMC article.
-
CTCF sites display cell cycle-dependent dynamics in factor binding and nucleosome positioning.Genome Res. 2019 Feb;29(2):236-249. doi: 10.1101/gr.241547.118. Epub 2019 Jan 17. Genome Res. 2019. PMID: 30655336 Free PMC article.
-
Detection of Neanderthal Adaptively Introgressed Genetic Variants That Modulate Reporter Gene Expression in Human Immune Cells.Mol Biol Evol. 2022 Jan 7;39(1):msab304. doi: 10.1093/molbev/msab304. Mol Biol Evol. 2022. PMID: 34662402 Free PMC article.
References
-
- Barski A, et al. High-Resolution Profiling of Histone Methylations in the Human Genome. Cell. 2007;129:823–837. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources