Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Dec 15;12(12):3093-3102.
doi: 10.1021/acschembio.7b00688. Epub 2017 Nov 22.

Coculture of Marine Invertebrate-Associated Bacteria and Interdisciplinary Technologies Enable Biosynthesis and Discovery of a New Antibiotic, Keyicin

Affiliations

Coculture of Marine Invertebrate-Associated Bacteria and Interdisciplinary Technologies Enable Biosynthesis and Discovery of a New Antibiotic, Keyicin

Navid Adnani et al. ACS Chem Biol. .

Abstract

Advances in genomics and metabolomics have made clear in recent years that microbial biosynthetic capacities on Earth far exceed previous expectations. This is attributable, in part, to the realization that most microbial natural product (NP) producers harbor biosynthetic machineries not readily amenable to classical laboratory fermentation conditions. Such "cryptic" or dormant biosynthetic gene clusters (BGCs) encode for a vast assortment of potentially new antibiotics and, as such, have become extremely attractive targets for activation under controlled laboratory conditions. We report here that coculturing of a Rhodococcus sp. and a Micromonospora sp. affords keyicin, a new and otherwise unattainable bis-nitroglycosylated anthracycline whose mechanism of action (MOA) appears to deviate from those of other anthracyclines. The structure of keyicin was elucidated using high resolution MS and NMR technologies, as well as detailed molecular modeling studies. Sequencing of the keyicin BGC (within the Micromonospora genome) enabled both structural and genomic comparisons to other anthracycline-producing systems informing efforts to characterize keyicin. The new NP was found to be selectively active against Gram-positive bacteria including both Rhodococcus sp. and Mycobacterium sp. E. coli-based chemical genomics studies revealed that keyicin's MOA, in contrast to many other anthracyclines, does not invoke nucleic acid damage.

PubMed Disclaimer

Conflict of interest statement

Notes

The authors declare no competing financial interest.

Figures

Figure 1
Figure 1
Structure of new co-culture-dependent antibiotic keyicin (1).
Figure 2
Figure 2
LCMS-PCA metabolomics of Micromonospora sp. and Rhodococcus sp. co-culture. (A) PCA scores plot describing variance in metabolites in co-culture and monoculture extracts of the Micromonospora sp. and Rhodococcus sp. (B) PCA loadings plot displaying individual metabolites responsible for the variance observed between extracts; the high variance seen in co-culture extracts is attributable to metabolites highlighted by the yellow oval in plot 2B.
Figure 3
Figure 3
Cell-cell contact study between Micromonospora sp. WMMB-235 and Rhodococcus sp. WMMA-185. (A1 and A2) Each half of custom co-culture vessel enabling separation of two independent cultures with 0.2 μm filter. (B) Intact co-culture vessel with filter membrane separating cell types. (C) Aliquots of the Rhodococcus sp. and (D) aliquots of the Micromonospora sp. removed from culture, diluted, and streaked every 2 d.
Figure 4
Figure 4
Key HMBC (red) and ROESY (blue) correlations in core of (1) and for determination of glycosidic linkages. Carbon connectivities determined by 13C–13C COSY correlations (red). Detailed application of specific ROESY correlations were instrumental in determining S1–S7 configurations (Supporting Information).
Figure 5
Figure 5
Direct comparisons of the keyicin aglycone core to the intact structure of nogalamycin and the more classically arranged anthracycline aclacinomycin A.
Figure 6
Figure 6
Partial characterization of anthracycline core possibilities for keyicin via application of molecular modeling and DFT calculation approaches. See Supporting Information for experimental data for these and alternative variants.
Figure 7
Figure 7
Correlations of orfs (and resulting gene products) to key benzoxocin linkages for keyicin versus nogalamycin aglycones. Gene/enzyme similarities across the two NP systems are color coded with arrows indicating key linkages installed. Notably only kyc54 and snoN appear to be similar yet fail to carry out the same chemistry upon their respective substrates.

Similar articles

Cited by

References

    1. Pye CR, Bertin MJ, Lokey RS, Gerwick WH, Linington RG. Retrospective analysis of natural products provides insights for future discovery trends. Proc Natl Acad Sci U S A. 2017;114:5601–5606. - PMC - PubMed
    1. Yuet KP, Tirrell DA. Chemical tools for temporally and spatially resolved mass spectrometry-based proteomics. Ann Biomed Eng. 2014;42:299–311. - PMC - PubMed
    1. Yang JY, Sanchez LM, Rath CM, Liu X, Boudreau PD, Bruns N, Glukhov E, Wodtke A, de Felicio R, Fenner A, Wong WR, Linington RG, Zhang L, Debonsi HM, Gerwick WH, Dorrestein PC. Molecular networking as a dereplication strategy. J Nat Prod. 2013;76:1686–1699. - PMC - PubMed
    1. Watrous J, Roach P, Alexandrov T, Heath BS, Yang JY, Kersten RD, van der Voort M, Pogliano K, Gross H, Raaijmakers JM, Moore BS, Laskin J, Bandeira N, Dorrestein PC. Mass spectral molecular networking of living microbial colonies. Proc Natl Acad Sci U S A. 2012;109:E1743–1752. - PMC - PubMed
    1. Shih CJ, Chen PY, Liaw CC, Lai YM, Yang YL. Bringing microbial interactions to light using imaging mass spectrometry. Nat Prod Rep. 2014;31:739–755. - PubMed

Publication types