Modeling the Evolution of Female Meiotic Drive in Maize
- PMID: 29122849
- PMCID: PMC5765341
- DOI: 10.1534/g3.117.300073
Modeling the Evolution of Female Meiotic Drive in Maize
Abstract
Autosomal drivers violate Mendel's law of segregation in that they are overrepresented in gametes of heterozygous parents. For drivers to be polymorphic within populations rather than fixing, their transmission advantage must be offset by deleterious effects on other fitness components. In this paper, we develop an analytical model for the evolution of autosomal drivers that is motivated by the neocentromere drive system found in maize. In particular, we model both the transmission advantage and deleterious fitness effects on seed viability, pollen viability, seed to adult survival mediated by maternal genotype, and seed to adult survival mediated by offspring genotype. We derive general, biologically intuitive conditions for the four most likely evolutionary outcomes and discuss the expected evolution of autosomal drivers given these conditions. Finally, we determine the expected equilibrium allele frequencies predicted by the model given recent estimates of fitness components for all relevant genotypes and show that the predicted equilibrium is within the range observed in maize land races for levels of drive at the low end of what has been observed.
Keywords: abnormal chromosome 10; autosomal drive; neocentromere; segregation distortion; selfish genetic element.
Copyright © 2018 Hall, Dawe.
Figures




Similar articles
-
Fitness Costs and Variation in Transmission Distortion Associated with the Abnormal Chromosome 10 Meiotic Drive System in Maize.Genetics. 2018 Jan;208(1):297-305. doi: 10.1534/genetics.117.300060. Epub 2017 Nov 9. Genetics. 2018. PMID: 29122827 Free PMC article.
-
Meiotic drive of chromosomal knobs reshaped the maize genome.Genetics. 1999 Sep;153(1):415-26. doi: 10.1093/genetics/153.1.415. Genetics. 1999. PMID: 10471723 Free PMC article.
-
Centromere-associated female meiotic drive entails male fitness costs in monkeyflowers.Science. 2008 Dec 5;322(5907):1559-62. doi: 10.1126/science.1161406. Science. 2008. PMID: 19056989
-
Genetic Villains: Killer Meiotic Drivers.Trends Genet. 2018 Jun;34(6):424-433. doi: 10.1016/j.tig.2018.02.003. Epub 2018 Feb 27. Trends Genet. 2018. PMID: 29499907 Free PMC article. Review.
-
Cell Biology of Cheating-Transmission of Centromeres and Other Selfish Elements Through Asymmetric Meiosis.Prog Mol Subcell Biol. 2017;56:377-396. doi: 10.1007/978-3-319-58592-5_16. Prog Mol Subcell Biol. 2017. PMID: 28840246 Review.
Cited by
-
Selfish chromosomal drive shapes recent centromeric histone evolution in monkeyflowers.PLoS Genet. 2021 Apr 22;17(4):e1009418. doi: 10.1371/journal.pgen.1009418. eCollection 2021 Apr. PLoS Genet. 2021. PMID: 33886547 Free PMC article.
-
Genetic and environmental influences on the distributions of three chromosomal drive haplotypes in maize.bioRxiv [Preprint]. 2025 May 27:2025.05.22.655462. doi: 10.1101/2025.05.22.655462. bioRxiv. 2025. Update in: PLoS Genet. 2025 Jul 16;21(7):e1011742. doi: 10.1371/journal.pgen.1011742. PMID: 40501570 Free PMC article. Updated. Preprint.
-
An assessment of the immune costs associated with meiotic drive elements in Drosophila.Proc Biol Sci. 2019 Sep 25;286(1911):20191534. doi: 10.1098/rspb.2019.1534. Epub 2019 Sep 18. Proc Biol Sci. 2019. PMID: 31530140 Free PMC article.
-
Genetic and environmental influences on the distributions of three chromosomal drive haplotypes in maize.PLoS Genet. 2025 Jul 16;21(7):e1011742. doi: 10.1371/journal.pgen.1011742. eCollection 2025 Jul. PLoS Genet. 2025. PMID: 40668866 Free PMC article.
-
Distinct kinesin motors drive two types of maize neocentromeres.Genes Dev. 2020 Sep 1;34(17-18):1239-1251. doi: 10.1101/gad.340679.120. Epub 2020 Aug 20. Genes Dev. 2020. PMID: 32820038 Free PMC article.
References
-
- Beadle G. W., 1946. Genes and the chemistry of the organism. Am. Sci. 34: 31–53. - PubMed
-
- Burt A., Trivers R. L., 2006. Genes in Conflict: The Biology of Selfish Genetic Elements. Harvard University Press, Cambridge, MA.
-
- Charlesworth B., Charlesworth D., 1998. Some evolutionary consequences of deleterious mutations. Genetica 102–103: 3–19. - PubMed
-
- Davis R. H., Perkins D. D., 2002. Neurospora: a model of model microbes. Nat. Rev. Genet. 3: 397–403. - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources