Redox-sensitive alteration of replisome architecture safeguards genome integrity
- PMID: 29123070
- DOI: 10.1126/science.aao3172
Redox-sensitive alteration of replisome architecture safeguards genome integrity
Abstract
DNA replication requires coordination between replication fork progression and deoxynucleotide triphosphate (dNTP)-generating metabolic pathways. We find that perturbation of ribonucleotide reductase (RNR) in humans elevates reactive oxygen species (ROS) that are detected by peroxiredoxin 2 (PRDX2). In the oligomeric state, PRDX2 forms a replisome-associated ROS sensor, which binds the fork accelerator TIMELESS when exposed to low levels of ROS. Elevated ROS levels generated by RNR attenuation disrupt oligomerized PRDX2 to smaller subunits, whose dissociation from chromatin enforces the displacement of TIMELESS from the replisome. This process instantly slows replication fork progression, which mitigates pathological consequences of replication stress. Thus, redox signaling couples fluctuations of dNTP biogenesis with replisome activity to reduce stress during genome duplication. We propose that cancer cells exploit this pathway to increase their adaptability to adverse metabolic conditions.
Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Comment in
-
The need to regulate replication fork speed.Science. 2017 Nov 10;358(6364):722-723. doi: 10.1126/science.aaq0678. Science. 2017. PMID: 29123052 No abstract available.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
Miscellaneous