Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Nov 10;8(1):1408.
doi: 10.1038/s41467-017-01819-3.

A glimpse of gluons through deeply virtual compton scattering on the proton

M Defurne  1 A Martí Jiménez-Argüello  2   3 Z Ahmed  4 H Albataineh  5 K Allada  6 K A Aniol  7 V Bellini  8 M Benali  9 W Boeglin  10 P Bertin  9   11 M Brossard  9 A Camsonne  11 M Canan  12 S Chandavar  13 C Chen  14 J-P Chen  11 C W de Jager  11 R de Leo  15 C Desnault  2 A Deur  11 L El Fassi  16 R Ent  11 D Flay  17 M Friend  18 E Fuchey  19   9   20 S Frullani  21 F Garibaldi  21 D Gaskell  11 A Giusa  8 O Glamazdin  22 S Golge  23 J Gomez  11 O Hansen  11 D Higinbotham  11 T Holmstrom  24 T Horn  25 J Huang  6 M Huang  26 C E Hyde  9   12 S Iqbal  7 F Itard  9 H Kang  27 A Kelleher  28 C Keppel  11 S Koirala  12 I Korover  29 J J LeRose  11 R Lindgren  30 E Long  31 M Magne  9 J Mammei  32 D J Margaziotis  7 P Markowitz  10 M Mazouz  33 F Meddi  21 D Meekins  11 R Michaels  11 M Mihovilovic  34 C Muñoz Camacho  2   9 P Nadel-Turonski  11 N Nuruzzaman  14 R Paremuzyan  2 A Puckett  35 V Punjabi  36 Y Qiang  11 A Rakhman  4 M N H Rashad  12 S Riordan  37 J Roche  13 G Russo  8 F Sabatié  19 K Saenboonruang  30   38 A Saha  11 B Sawatzky  11   17 L Selvy  31 A Shahinyan  39 S Sirca  34 P Solvignon  11   40 M L Sperduto  8 R Subedi  41 V Sulkosky  6 C Sutera  8 W A Tobias  30 G M Urciuoli  42 D Wang  30 B Wojtsekhowski  11 H Yao  17 Z Ye  30 X Zhan  43 J Zhang  11 B Zhao  28 Z Zhao  30 X Zheng  30 P Zhu  30
Affiliations

A glimpse of gluons through deeply virtual compton scattering on the proton

M Defurne et al. Nat Commun. .

Abstract

The internal structure of nucleons (protons and neutrons) remains one of the greatest outstanding problems in modern nuclear physics. By scattering high-energy electrons off a proton we are able to resolve its fundamental constituents and probe their momenta and positions. Here we investigate the dynamics of quarks and gluons inside nucleons using deeply virtual Compton scattering (DVCS)-a highly virtual photon scatters off the proton, which subsequently radiates a photon. DVCS interferes with the Bethe-Heitler (BH) process, where the photon is emitted by the electron rather than the proton. We report herein the full determination of the BH-DVCS interference by exploiting the distinct energy dependences of the DVCS and BH amplitudes. In the regime where the scattering is expected to occur off a single quark, measurements show an intriguing sensitivity to gluons, the carriers of the strong interaction.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interests.

Figures

Fig. 1
Fig. 1
A few examples of DVCS diagrams. At leading-order in perturbative quantum chromodynamics (QCD) (a), the virtual photon with four-momentum q interacts with a single quark (single straight line) from the proton p, in the limit Q 2 = −q 2 much larger than the proton mass squared. Subsequently, the active quark emits a real photon with four-momentum q′. The recoil proton has four-momentum p′. Perturbation theory can be used to calculate the part of the amplitude above the (dashed) factorization line, whereas GPDs encode the non-perturbative structure of the nucleon. At next-to-leading order in perturbative QCD (b), a gluon (curly line) from the proton splits into a quark-antiquark pair and the quark absorbs the virtual photon. c An example of deeply virtual Compton scattering (DVCS) diagram at next-to-leading twist illustrating a quark-gluon correlation. The average longitudinal momentum fraction carried by the active parton (quark/gluon) is x and −2ξ is the longitudinal momentum transfer. The helicity of the photons contributing to the leading-twist amplitudes are specified in parenthesis
Fig. 2
Fig. 2
Lowest-order diagrams for ep → epγ. The momentum four-vectors of external particles are labeled on the left. The net four-momentum transfer to the proton is Δμ = (q − q′)μ = (p′ − p)μ. In the virtual Compton scattering (VCS) amplitude, the (spacelike) virtuality of the incident photon is Q 2 = −q 2 = −(k − k′)2. The Bjorken variable x B is defined as x B = Q 2/(2qP). In the Bethe-Heitler amplitude, the virtuality of the incident photon is −Δ2 = −t
Fig. 3
Fig. 3
Missing mass squared distribution. The black histogram presents the raw data. Accidental and π 0 backgrounds are shown in green and orange, respectively. The subtraction of the accidental and π 0 contributions from the raw data is displayed in blue. The Monte-Carlo simulation is represented by the open crosses, whereas the triangles show the estimated inclusive yield obtained by subtracting the simulation from the background-subtracted data. The vertical dotted lines illustrate the two cuts applied on MX2 in the analysis. This figure corresponds to the kinematic setting E beam = 4.455 GeV and Q 2 = 1.75 GeV2, integrated over t
Fig. 4
Fig. 4
Beam helicity-dependent and helicity-independent cross sections. Unpolarized cross sections are represented with black circles and polarized cross sections with black triangles. The kinematic setting shown corresponds to Q 2 = 1.75 GeV2, x B = 0.36, and t = −0.30 GeV2. The beam energies are E beam = 4.455 GeV (a) and E beam = 5.55 GeV (b). Bars show s.d. statistical uncertainties, calculated as the squared root of the number of detected events and propagated to the measured cross sections. Dashed lines represent the result of the LT/LO fit with H++, E++, H~++, and E~++. Solid lines show the result of the HT fit with H++, H~++, H0+, and H~0+. Curves for the NLO fit (H++, H~++, H-+, and H~-+) overlap with the HT fit and are not shown. Results of the KM15 fit to previously published DVCS data are also presented
Fig. 5
Fig. 5
A generalized Rosenbluth separation. DVCS2 and DVCS-BH interference contributions are shown at Q 2 = 1.75 GeV2, x B = 0.36, t = −0.30 GeV2, and E beam = 5.55 GeV for the helicity-independent (a) and helicity-dependent (b) cross sections. Solid and dotted lines represent these contributions for the twist-3 (HT) scenario; dashed and dashed-dotted lines correspond to the NLO scenario. Bands show s.d. statistical uncertainties. A DVCS2 contribution appears in the helicity-dependent cross section only if there is a contribution from the longitudinal polarization of the virtual photon (HT scenario)

References

    1. Mueller D, Robaschik D, Geyer B, Dittes FM, Horejsi J. Wave functions, evolution equations and evolution kernels from light-ray operators of QCD. Fortschr. Phys. 1994;42:101–144. doi: 10.1002/prop.2190420202. - DOI
    1. Ji XD. Gauge invariant decomposition of nucleon spin. Phys. Rev. Lett. 1997;78:610–613. doi: 10.1103/PhysRevLett.78.610. - DOI
    1. Radyushkin AV. Nonforward parton distributions. Phys. Rev. D. 1997;56:5524–5557. doi: 10.1103/PhysRevD.56.5524. - DOI
    1. Ji XD. Deeply virtual Compton scattering. Phys. Rev. D. 1997;55:7114–7125. doi: 10.1103/PhysRevD.55.7114. - DOI
    1. Diehl M. Generalized parton distributions. Phys. Rept. 2003;388:41–277. doi: 10.1016/j.physrep.2003.08.002. - DOI

Publication types

LinkOut - more resources