Combining DNA damaging therapeutics with immunotherapy: more haste, less speed
- PMID: 29123260
- PMCID: PMC5808021
- DOI: 10.1038/bjc.2017.376
Combining DNA damaging therapeutics with immunotherapy: more haste, less speed
Abstract
The idea that chemotherapy can be used in combination with immunotherapy may seem somewhat counterproductive, as it can theoretically eliminate the immune cells needed for antitumour immunity. However, much preclinical work has now demonstrated that in addition to direct cytotoxic effects on cancer cells, a proportion of DNA damaging agents may actually promote immunogenic cell death, alter the inflammatory milieu of the tumour microenvironment and/or stimulate neoantigen production, thereby activating an antitumour immune response. Some notable combinations have now moved forward into the clinic, showing promise in phase I-III trials, whereas others have proven toxic, and challenging to deliver. In this review, we discuss the emerging data of how DNA damaging agents can enhance the immunogenic properties of malignant cells, focussing especially on immunogenic cell death, and the expansion of neoantigen repertoires. We discuss how best to strategically combine DNA damaging therapeutics with immunotherapy, and the challenges of successfully delivering these combination regimens to patients. With an overwhelming number of chemotherapy/immunotherapy combination trials in process, clear hypothesis-driven trials are needed to refine the choice of combinations, and determine the timing and sequencing of agents in order to stimulate antitumour immunological memory and improve maintained durable response rates, with minimal toxicity.
Conflict of interest statement
The authors declare no conflict of interest.
Figures


Comment in
-
Combining immunotherapy with PARP inhibitors. Is it possible to find the way through?Immunotherapy. 2024;16(16-17):999-1003. doi: 10.1080/1750743X.2024.2398412. Epub 2024 Sep 13. Immunotherapy. 2024. PMID: 39268937 Free PMC article. No abstract available.
References
-
- Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SAJR, Behjati S, Biankin AV, Bignell GR, Bolli N, Borg A, Børresen-Dale A-L, Boyault S, Burkhardt B, Butler AP, Caldas C, Davies HR, Desmedt C, Eils R, Eyfjörd JE, Foekens JA, Greaves M, Hosoda F, Hutter B, Ilicic T, Imbeaud S, Imielinsk M, Jäger N, Jones DTW, Jones D, Knappskog S, Kool M, Lakhani SR, López-Otín C, Martin S, Munshi NC, Nakamura H, Northcott PA, Pajic M, Papaemmanuil E, Paradiso A, Pearson JV, Puente XS, Raine K, Ramakrishna M, Richardson AL, Richter J, Rosenstiel P, Schlesner M, Schumacher TN, Span PN, Teague JW, Totoki Y, Tutt ANJ, Valdés-Mas R, van Buuren MM, van ’t Veer L, Vincent-Salomon A, Waddell N, Yates LR, Zucman-Rossi J, Andrew Futreal P, McDermott U, Lichter P, Meyerson M, Grimmond SM, Siebert R, Campo E, Shibata T, Pfister SM, Campbell PJ, Stratton MR (2013) Signatures of mutational processes in human cancer. Nature 500: 415–421. - PMC - PubMed
-
- Anagnostou V, Smith KN, Forde PM, Niknafs N, Bhattacharya R, White J, Zhang T, Adleff V, Phallen J, Wali N, Hruban C, Guthrie VB, Rodgers K, Naidoo J, Kang H, Sharfman WH, Georgiades C, Verde F, Illei P, Li QK, Gabrielson E, Brock MV, Zahnow CA, Baylin SB, Scharpf R, Brahmer JR, Karchin R, Pardoll DM, Velculescu VE (2016) Evolution of neoantigen landscape during immune checkpoint blockade in non-small cell lung cancer. Cancer Discov 7: 264–276. - PMC - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials