Labeling of cell therapies: How can we get it right?
- PMID: 29123957
- PMCID: PMC5665073
- DOI: 10.1080/2162402X.2017.1345403
Labeling of cell therapies: How can we get it right?
Abstract
Labeling cells for non-invasive tracking in vivo using magnetic resonance imaging (MRI) is an emerging hot topic garnering ever increasing attention, yet it is fraught with numerous methodological challenges, which merit careful attention. Several of the current procedures used to label cells for tracking by MRI take advantage of the intrinsic phagocytic nature of cells to engulf nanoparticles, though cells with low intrinsic phagocytic capacity are also commonly studied. Before we take the next steps towards administering such cells in vivo, it is essential to understand how the nanolabel is recognized, internalized, trafficked and distributed within the specific host cell. This is even more critical when contemplating labeling of cells that may ultimately be applied in vivo to patients in a therapeutic context.
Keywords: Cell labeling; MRI; NK cells; T cells; cell tracking; clinical application; electron microscopy; excess nanoparticles; internalization; intracellular; membrane-bound; nanolabel; nanoparticles; patient studies; phagocytes.
Similar articles
-
Cell Labeling with Magneto-Endosymbionts and the Dissection of the Subcellular Location, Fate, and Host Cell Interactions.Mol Imaging Biol. 2018 Feb;20(1):55-64. doi: 10.1007/s11307-017-1094-6. Mol Imaging Biol. 2018. PMID: 28631141 Free PMC article.
-
Epicardium-Derived Cells Formed After Myocardial Injury Display Phagocytic Activity Permitting In Vivo Labeling and Tracking.Stem Cells Transl Med. 2016 May;5(5):639-50. doi: 10.5966/sctm.2015-0159. Epub 2016 Apr 7. Stem Cells Transl Med. 2016. PMID: 27057005 Free PMC article.
-
Effectual Labeling of Natural Killer Cells with Upconverting Nanoparticles by Electroporation for In Vivo Tracking and Biodistribution Assessment.ACS Appl Mater Interfaces. 2020 Nov 4;12(44):49362-49370. doi: 10.1021/acsami.0c12849. Epub 2020 Oct 13. ACS Appl Mater Interfaces. 2020. PMID: 33050704
-
Aqueous colloidal nanoemulsion of perfluorocarbon polymers.2011 Feb 24 [updated 2011 Mar 31]. In: Molecular Imaging and Contrast Agent Database (MICAD) [Internet]. Bethesda (MD): National Center for Biotechnology Information (US); 2004–2013. 2011 Feb 24 [updated 2011 Mar 31]. In: Molecular Imaging and Contrast Agent Database (MICAD) [Internet]. Bethesda (MD): National Center for Biotechnology Information (US); 2004–2013. PMID: 21473038 Free Books & Documents. Review.
-
Poly(N,N-dimethylacrylamide)-coated maghemite nanoparticles for labeling and tracking mesenchymal stem cells.2009 Dec 23 [updated 2010 Feb 16]. In: Molecular Imaging and Contrast Agent Database (MICAD) [Internet]. Bethesda (MD): National Center for Biotechnology Information (US); 2004–2013. 2009 Dec 23 [updated 2010 Feb 16]. In: Molecular Imaging and Contrast Agent Database (MICAD) [Internet]. Bethesda (MD): National Center for Biotechnology Information (US); 2004–2013. PMID: 20641410 Free Books & Documents. Review.
Cited by
-
T cells loaded with magnetic nanoparticles are retained in peripheral lymph nodes by the application of a magnetic field.J Nanobiotechnology. 2019 Jan 22;17(1):14. doi: 10.1186/s12951-019-0440-z. J Nanobiotechnology. 2019. PMID: 30670029 Free PMC article.
-
Citrate-Coated Superparamagnetic Iron Oxide Nanoparticles Enable a Stable Non-Spilling Loading of T Cells and Their Magnetic Accumulation.Cancers (Basel). 2021 Aug 17;13(16):4143. doi: 10.3390/cancers13164143. Cancers (Basel). 2021. PMID: 34439296 Free PMC article.
-
Functional Imaging Using Fluorine (19F) MR Methods: Basic Concepts.Methods Mol Biol. 2021;2216:279-299. doi: 10.1007/978-1-0716-0978-1_17. Methods Mol Biol. 2021. PMID: 33476007 Free PMC article.
-
Monitoring of intracerebellarly-administered natural killer cells with fluorine-19 MRI.J Neurooncol. 2019 May;142(3):395-407. doi: 10.1007/s11060-019-03091-5. Epub 2019 Feb 20. J Neurooncol. 2019. PMID: 30788681 Free PMC article.
-
Fluorine-19 nuclear magnetic resonance of chimeric antigen receptor T cell biodistribution in murine cancer model.Sci Rep. 2017 Dec 18;7(1):17748. doi: 10.1038/s41598-017-17669-4. Sci Rep. 2017. PMID: 29255242 Free PMC article.
References
-
- Bouchlaka MN, Ludwig KD, Gordon JW, Kutz MP, Bednarz BP, Fain SB, Capitini CM. (19)F-MRI for monitoring human NK cells in vivo. Oncoimmunology 2016; 5:e1143996; PMID:27467963; https://doi.org/10.1080/2162402X.2016.1143996 - DOI - PMC - PubMed
-
- Ferguson PM, Slocombe A, Tilley RD, Hermans IF. Using magnetic resonance imaging to evaluate dendritic cell-based vaccination. PloS One 2013; 8:e65318; PMID:23734246; https://doi.org/10.1371/journal.pone.0065318 - DOI - PMC - PubMed
-
- de Vries IJ, Lesterhuis WJ, Barentsz JO, Verdijk P, van Krieken JH, Boerman OC, Oyen WJ, Bonenkamp JJ, Boezeman JB, Adema GJ, et al. . Magnetic resonance tracking of dendritic cells in melanoma patients for monitoring of cellular therapy. Nat Biotechnol 2005; 23:1407-13; PMID:16258544; https://doi.org/10.1038/nbt1154 - DOI - PubMed
-
- Ahrens ET, Helfer BM, O'Hanlon CF, Schirda C. Clinical cell therapy imaging using a perfluorocarbon tracer and fluorine‐19 MRI. Magn Reson Med 2014; 72:1696-701; PMID:25241945; https://doi.org/10.1002/mrm.25454 - DOI - PMC - PubMed
-
- Gustafson HH, Holt-Casper D, Grainger DW, Ghandehari H. Nanoparticle uptake: The phagocyte problem. Nano Today 2015; 10:487-510; PMID:26640510; https://doi.org/10.1016/j.nantod.2015.06.006 - DOI - PMC - PubMed
Publication types
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources