Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2017 Oct 26:4:48.
doi: 10.3389/fnut.2017.00048. eCollection 2017.

Microbial Therapeutics Designed for Infant Health

Affiliations
Review

Microbial Therapeutics Designed for Infant Health

Claire Watkins et al. Front Nutr. .

Abstract

Acknowledgment of the gut microbiome as a vital asset to health has led to multiple studies attempting to elucidate its mechanisms of action. During the first year of life, many factors can cause fluctuation in the developing gut microbiome. Host genetics, maternal health status, mode of delivery, gestational age, feeding regime, and perinatal antibiotic usage, are known factors which can influence the development of the infant gut microbiome. Thus, the microbiome of vaginally born, exclusively breastfed infants at term, with no previous exposure to antibiotics, either directly or indirectly from the mother, is to be considered the "gold standard." Moreover, the use of prebiotics as an aid for the development of a healthy gut microbiome is equally as important in maintaining gut homeostasis. Breastmilk, a natural prebiotic source, provides optimal active ingredients for the growth of beneficial microbial species. However, early life disorders such as necrotising enterocolitis, childhood obesity, and even autism have been associated with an altered/disturbed gut microbiome. Subsequently, microbial therapies have been introduced, in addition to suitable prebiotic ingredients, which when administered, may aid in the prevention of a microbial disturbance in the gastrointestinal tract. The aim of this mini-review is to highlight the beneficial effects of different probiotic and prebiotic treatments in early life, with particular emphasis on the different conditions which negatively impact microbial colonisation at birth.

Keywords: gut microbiota; health; infant; prebiotics; probiotics.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Initial exposure to the microbial environment surrounding the infant can have a significant impact on gut microbiota development. External factors, such as maternal health status, mode of delivery, gestational age, and feeding regime, can impact the colonization and flux of microorganisms during this critical period in life. Subsequently, multiple studies have begun to focus on how these factors can affect the gut microbiome in early life. Moreover, in order to improve the health status of the infant gut, current focus is on the effect of probiotics and prebiotics in terms of their potential multifaceted health benefits. The current mini-review outlines a number of studies where either pro- or pre-biotics were utilized as a microbial therapeutic to improve infant health.

Similar articles

Cited by

References

    1. Hill CJ, Lynch DB, Murphy K, Ulaszewska M, Jeffery IB, O’Shea CA, et al. Evolution of gut microbiota composition from birth to 24 weeks in the INFANTMET cohort. Microbiome (2017) 5:21. 10.1186/s40168-016-0213-y - DOI - PMC - PubMed
    1. Koenig JE, Spor A, Scalfone N, Fricker AD, Stombaugh J, Knight R, et al. Succession of microbial consortia in the developing infant gut microbiome. Proc Natl Acad Sci U S A (2011) 108(1):4578–85. 10.1073/pnas.1000081107 - DOI - PMC - PubMed
    1. Lim MY, Yoon HS, Rho M, Sung J, Song YM, Lee K, et al. Analysis of the association between host genetics, smoking, and sputum microbiota in healthy humans. Sci Rep (2016) 6:23745. 10.1038/srep23745 - DOI - PMC - PubMed
    1. Murphy K, O’ Shea CA, Ryan CA, Dempsey EM, O’ Toole PW, Stanton C, et al. The gut microbiota composition in dichorionic triplet sets suggests a role for host genetic factors. PLoS One (2015) 10(4):e0122561. 10.1371/journal.pone.0122561 - DOI - PMC - PubMed
    1. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature (2014) 505(7484):559–63. 10.1038/nature12820 - DOI - PMC - PubMed

LinkOut - more resources