Beating Heart Motion Accurate Prediction Method Based on Interactive Multiple Model: An Information Fusion Approach
- PMID: 29124062
- PMCID: PMC5662810
- DOI: 10.1155/2017/1279486
Beating Heart Motion Accurate Prediction Method Based on Interactive Multiple Model: An Information Fusion Approach
Abstract
Robot-assisted motion compensated beating heart surgery has the advantage over the conventional Coronary Artery Bypass Graft (CABG) in terms of reduced trauma to the surrounding structures that leads to shortened recovery time. The severe nonlinear and diverse nature of irregular heart rhythm causes enormous difficulty for the robot to realize the clinic requirements, especially under arrhythmias. In this paper, we propose a fusion prediction framework based on Interactive Multiple Model (IMM) estimator, allowing each model to cover a distinguishing feature of the heart motion in underlying dynamics. We find that, at normal state, the nonlinearity of the heart motion with slow time-variant changing dominates the beating process. When an arrhythmia occurs, the irregularity mode, the fast uncertainties with random patterns become the leading factor of the heart motion. We deal with prediction problem in the case of arrhythmias by estimating the state with two behavior modes which can adaptively "switch" from one to the other. Also, we employed the signal quality index to adaptively determine the switch transition probability in the framework of IMM. We conduct comparative experiments to evaluate the proposed approach with four distinguished datasets. The test results indicate that the new proposed approach reduces prediction errors significantly.
Figures






Similar articles
-
Heart motion uncertainty compensation prediction method for robot assisted beating heart surgery - Master-slave Kalman Filters approach.J Med Syst. 2014 May;38(5):52. doi: 10.1007/s10916-014-0052-y. Epub 2014 May 1. J Med Syst. 2014. PMID: 24788450
-
Motion prediction for computer-assisted beating heart surgery.IEEE Trans Biomed Eng. 2009 Nov;56(11):2551-63. doi: 10.1109/TBME.2009.2026054. Epub 2009 Jun 26. IEEE Trans Biomed Eng. 2009. PMID: 19567337
-
Assessment of nonlinear heart rate dynamics after beating-heart revascularization.Heart Surg Forum. 2009 Jan;12(1):E10-6. doi: 10.1532/HSF98.20081116. Heart Surg Forum. 2009. PMID: 19233759 Clinical Trial.
-
Towards active tracking of beating heart motion in the presence of arrhythmia for robotic assisted beating heart surgery.PLoS One. 2014 Jul 21;9(7):e102877. doi: 10.1371/journal.pone.0102877. eCollection 2014. PLoS One. 2014. PMID: 25048462 Free PMC article.
-
A comprehensive multimodality heart motion prediction algorithm for robotic-assisted beating heart surgery.Int J Med Robot. 2019 Apr;15(2):e1975. doi: 10.1002/rcs.1975. Epub 2018 Dec 19. Int J Med Robot. 2019. PMID: 30474912
Cited by
-
Deep learning cardiac motion analysis for human survival prediction.Nat Mach Intell. 2019 Feb 11;1:95-104. doi: 10.1038/s42256-019-0019-2. Nat Mach Intell. 2019. PMID: 30801055 Free PMC article.
-
Deep learning-based prognostic model using non-enhanced cardiac cine MRI for outcome prediction in patients with heart failure.Eur Radiol. 2023 Nov;33(11):8203-8213. doi: 10.1007/s00330-023-09785-9. Epub 2023 Jun 7. Eur Radiol. 2023. PMID: 37286789
References
-
- Newman M. F., et al. Longitudinal assessment of neurocognitive function after coronary-artery bypass surgery. The New England Journal of Medicine. 2001;344(6):395–402. - PubMed
-
- Bebek Ö., Çavuşoğlu M. C. Intelligent control algorithms for robotic-assisted beating heart surgery. IEEE Transactions on Robotics. 2007;23(3):468–480. doi: 10.1109/TRO.2007.895077. - DOI
-
- Stefanovska A., Bračič M. Physics of the human cardiovascular system. Contemporary Physics. 1999;40(1):31–55. doi: 10.1080/001075199181693. - DOI
-
- Ivanov P., et al. Stochastic feedback and the regulation of biological rhythms. EPL (Europhysics Letters) 1998;43(4):363–368. - PubMed
-
- Saul J. Beat-to-beat variations of heart rate reflect modulation of cardiac autonomic outflow. Physiology. 1990;5(1):32–37.
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources