Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2018 Feb;19(2):178-197.
doi: 10.1111/obr.12630. Epub 2017 Nov 10.

Oleoylethanolamide: The role of a bioactive lipid amide in modulating eating behaviour

Affiliations
Review

Oleoylethanolamide: The role of a bioactive lipid amide in modulating eating behaviour

J Sihag et al. Obes Rev. 2018 Feb.

Abstract

Fatty acid ethanolamides are lipid mediators that regulate a plethora of physiological functions. One such bioactive lipid mediator, oleoylethanolamide (OEA), is a potent agonist of the peroxisome proliferator-activated receptor-alpha (PPAR-α), which modulates increased expression of the fatty acid translocase CD36 that enables the regulation of feeding behaviour. Consumption of dietary fat rich in oleic acid activates taste receptors in the gut activating specific enzymes that lead to the formation of OEA. OEA further combines with PPAR-α to enable fat oxidation in the liver, resulting in enhanced energy production. Evidence suggests that sustained ingestion of a high-fat diet abolishes the anorexic signal of OEA. Additionally, malfunction of the enterocyte that transforms oleic acid produced during fat digestion into OEA might be responsible for reduced satiety and hyperphagia, resulting in overweight and obesity. Thus, OEA anorectic signalling may be an essential element of the physiology and metabolic system regulating dietary fat intake and obesity. The evidence reviewed in this article indicates that intake of oleic acid, and thereby the resulting OEA imparting anorexic properties, is dependent on CD36, PPAR-α, enterocyte fat sensory receptors, histamine, oxytocin and dopamine; leading to increased fat oxidation and enhanced energy expenditure to induce satiety and increase feeding latency; and that a disruption in any of these systems will cease/curb fat-induced satiety.

Keywords: Obesity; oleic acid; oleoylethanolamide; satiety.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources