Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Dec 6;139(48):17660-17666.
doi: 10.1021/jacs.7b10377. Epub 2017 Nov 22.

Heterogeneous Rupturing Dendrimers

Affiliations

Heterogeneous Rupturing Dendrimers

Oliver C J Andrén et al. J Am Chem Soc. .

Abstract

Utilizing macromolecular scaffolds as templates for the production of small molecules that are distinctively different from the original monomer feedstock has many potential applications. Herein, as a proof-of-concept, a family of dendrimers displaying internally queued disulfide bridges were synthesized and exploited as flawless macromolecular templates that selectively rupture into a set of monomeric mercaptans. Disassembly was accomplished in a reducing environment, using DTT as an external stimulus, and the thiol constituents were successfully isolated. Their composition was dictated by three dendritic regions, i.e., (i) the symmetrical trithiol of the core (C3), (ii) the interior-asymmetric trithiols (CD2), and (iii) the periphery-asymmetric monothiols (DB2), in which B functionality is of an orthogonal nature. Taking into account the steady state between disulfides and thiols in all living cells, the collapse of the dendrimers to a multitude of smaller thiols was intracellularly assessed as a means to disrupt the balance of reactive oxygen species (ROS) often elevated in cancer cells. Indeed, the fragmentation induced a significant increase of ROS in human lung carcinoma A549 cells. These findings can potentially alter the perception of dendrimers being limited to carriers to being prodrugs for intracellular delivery of ROS with the potential to fight cancer.

PubMed Disclaimer

Publication types

LinkOut - more resources