Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Apr 15:102:113-120.
doi: 10.1016/j.bios.2017.11.015. Epub 2017 Nov 9.

Non-enzymatic electrochemical detection of glucose with a disposable paper-based sensor using a cobalt phthalocyanine-ionic liquid-graphene composite

Affiliations

Non-enzymatic electrochemical detection of glucose with a disposable paper-based sensor using a cobalt phthalocyanine-ionic liquid-graphene composite

Sudkate Chaiyo et al. Biosens Bioelectron. .

Abstract

We introduce for the first time a paper-based analytical device (PAD) for the non-enzymatic detection of glucose by modifying a screen-printed carbon electrode with cobalt phthalocyanine, graphene and an ionic liquid (CoPc/G/IL/SPCE). The modifying composite was characterized by UV-visible spectroscopy, energy dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The disposable devices show excellent conductivity and fast electron transfer kinetics. The results demonstrated that the modified electrode on PADs had excellent electrocatalytic activity towards the oxidation of glucose with NaOH as supporting electrolyte (0.1M). The oxidation potential of glucose was negatively shifted to 0.64V vs. the screen-printed carbon pseudo-reference electrode. The paper-based sensor comprised a wide linear concentration range for glucose, from 0.01 to 1.3mM and 1.3-5.0mM for low and high concentration of glucose assay, respectively, with a detection limit of 0.67µM (S/N = 3). Additionally, the PADs were applied to quantify glucose in honey, white wine and human serum. The disposable, efficient, sensitive and low-cost non-enzymatic PAD has great potential for the development of point-of-care testing (POCT) devices that can be applied in healthcare monitoring.

Keywords: Cobalt phthalocyanine; Graphene; Ionic liquids; Non-enzymatic glucose sensor; Paper-based analytical devices.

PubMed Disclaimer

Publication types

LinkOut - more resources